Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (5): 456-460    DOI: 10.19485/j.cnki.issn2096-5087.2022.05.006
  控烟专题 本期目录 | 过刊浏览 | 高级检索 |
电子烟急性暴露对小鼠BALF及肺表面活性蛋白的影响研究
王寅丹, 李婷, 张国庆, 章璐, 张进娜, 胡人杰, 刘翠清
浙江中医药大学公共卫生学院,浙江 杭州 310056
Effect of acute exposure to electronic cigarette on bronchoalveolar lavage fluid and pulmonary surfactant protein in mice
WANG Yindan, LI Ting, ZHANG Guoqing, ZHANG Lu, ZHANG Jinna, HU Renjie, LIU Cuiqing
School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310056, China
全文: PDF(843 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 探索急性暴露于电子烟的小鼠支气管肺泡灌洗液(BALF)白细胞计数、总蛋白含量以及肺表面活性蛋白水平,为电子烟的呼吸系统损害作用机制研究提供实验依据。方法 21只C57BL/6N雌鼠随机分为空白对照组、溶剂对照组和尼古丁组。溶剂对照组和尼古丁组小鼠每天分别暴露于电子烟烟液载体溶剂气溶胶和含25 mg/mL尼古丁的电子烟气溶胶3 h,空白对照组饲养在洁净空气中。暴露3 d后收集小鼠BALF,通过瑞氏-姬姆萨染色镜检观察细胞形态,统计白细胞数量,采用BCA法检测总蛋白含量;取小鼠肺组织采用实时荧光定量PCR检测表面活性蛋白基因mRNA表达水平。结果 3组小鼠生长状况良好,无明显异常,无死亡。尼古丁组小鼠BALF含大量单核-巨噬细胞,空白对照组和溶剂对照组相对较少。空白对照组、溶剂对照组和尼古丁组小鼠BALF中白细胞数分别为(2.00±0.77)×107个/L、(1.79±0.99)×107个/L和(4.00±1.35)×107个/L,总蛋白含量分别为(0.16±0.03)、(0.12±0.02)、(0.16±0.04)mg/mL,肺表面活性蛋白B(SP-B)mRNA相对表达量分别为1.00±0.14、0.82±0.12和0.74±0.07,SP-D mRNA相对表达量分别为1.00±0.06、0.90±0.02和0.71±0.15,3组比较差异均有统计学意义(F=9.199,P=0.002;F=3.610,P=0.048;F=5.491,P=0.028;F=10.460,P=0.005)。尼古丁组小鼠白细胞数高于空白对照组和溶剂对照组小鼠(P=0.007、0.003),总蛋白含量高于溶剂对照组小鼠(P=0.060),SP-B mRNA相对表达量低于空白对照组小鼠(P=0.025),SP-D mRNA相对表达量低于空白对照组和溶剂对照组小鼠(P=0.004、0.041)。结论 电子烟急性暴露引起小鼠肺内炎症水平升高,肺部毛细血管屏障受损并降低肺表面活性蛋白的表达。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王寅丹
李婷
张国庆
章璐
张进娜
胡人杰
刘翠清
关键词 电子烟尼古丁白细胞支气管肺泡灌洗液肺表面活性蛋白    
AbstractObjective To assess the effects of acute exposure to electronic cigarette ( e-cigarette ) on leukocyte and total protein levels in bronchoalveolar lavage fluid ( BALF ) and pulmonary surfactant protein expression in a mouse model, so as to provide insights into the elucidation of the mechanism underlying the damages to the respiratory system caused by e-cigarette. Methods Twenty-one C57BL/6N female mice were randomly divided into the blank control group, the solvent control group and the nicotine group. Mice in the solvent control group and the nicotine group were exposed to the solvent aerosol or e-cigarette aerosol containing 25 mg/mL nicotine for 3 hours daily, while mice in the blank control group were bred in clean air. Following 3-day exposure, mouse BALF and lung specimens were collected. The cell morphology was observed using microscopy following Wright-Giemsa staining and the leukocyte count was estimated in BALF, while the total protein expression was quantified using bicinchoninic acid ( BCA ) assay. In addition, the mRNA expression of pulmonary surfactant protein genes was detected in mouse lung specimens using quantitative real-time PCR ( qPCR ) assay. Results All mice in three groups grew well without obvious abnormality or death seen. Wright-Giemsa staining showed a higher number of mononuclear macrophages in mouse BALF in the nicotine group than in the blank control group and the solvent control group. The leukocyte counts were ( 2.00±0.77 )×107, ( 1.79±0.99 )×107 and ( 4.00±1.35 )×107 cells/L ( F=9.199, P=0.002 ), and the total protein levels were ( 0.16±0.03 ), ( 0.12±0.02 ) and ( 0.16±0.04 ) mg/mL in mouse BALF in the blank control group, solvent control group and nicotine group ( F=3.610, P=0.048 ), and the relative mRNA expression of pulmonary surfactant protein B (SP-B) and SP-D was 1.00±0.14, 0.82±0.12 and 0.74±0.07 ( F=5.491, P=0.028 ), and 1.00±0.06, 0.90±0.02 and 0.71±0.15 in mouse lung specimens, respectively ( F=10.460, P=0.005 ). The leukocyte count was significantly higher in the nicotine group than in the blank control group and solvent control group (P=0.007, 0.003), and the total protein content was higher in the nicotine group than in the solvent control group ( P=0.060 ), while the relative SP-B mRNA expression was lower in the nicotine group than in the blank control group ( P=0.025 ), and the relative SP-D mRNA expression was lower in the nicotine group than in the blank control group and solvent control group ( P=0.004, 0.041 ). Conclusion Acute exposure to e-cigarette results in elevated intrapulmonary inflammatory responses, pulmonary capillary barrier impairment and reduced pulmonary surfactant protein expression.
Key wordselectronic cigarette    nicotine    leukocyte    bronchoalveolar lavage fluid    pulmonary surfactant protein
收稿日期: 2022-03-07      修回日期: 2022-04-02     
中图分类号:  R361.3  
通信作者: 刘翠清,E-mail:liucuiqing@zcmu.edu.cn   
作者简介: 王寅丹,硕士研究生在读
引用本文:   
王寅丹, 李婷, 张国庆, 章璐, 张进娜, 胡人杰, 刘翠清. 电子烟急性暴露对小鼠BALF及肺表面活性蛋白的影响研究[J]. 预防医学, 2022, 34(5): 456-460.
WANG Yindan, LI Ting, ZHANG Guoqing, ZHANG Lu, ZHANG Jinna, HU Renjie, LIU Cuiqing. Effect of acute exposure to electronic cigarette on bronchoalveolar lavage fluid and pulmonary surfactant protein in mice. Preventive Medicine, 2022, 34(5): 456-460.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.05.006      或      http://www.zjyfyxzz.com/CN/Y2022/V34/I5/456
[1] CALLAHAN-LYON P.Electronic cigarettes:human health effects[J].Tob Control,2014,23(Suppl.2):ii36-ii40.
[2] MUTHUMALAGE T,PRINZ M,ANSAH K O,et al.Inflammatory and oxidative responses induced by exposure to commonly used e-cigarette flavoring chemicals and flavored e-liquids without nicotine[J].Front Physiol,2017,8:1-13.
[3] MUTHUMALAGE T,LAMB T,FRIEDMAN M R,et al.E-cigarette flavored pods induce inflammation,epithelial barrier dysfunction,and DNA damage in lung epithelial cells and monocytes[J/OL].Sci Rep,2019,9(1)[2022-04-02].https://doi.org/10.1038/s41598-019-51643-6.
[4] LIU Z,YAN J,TONG L,et al.The role of exosomes from BALF in lung disease[J].J Cell Physiol,2022,237(1):161-168.
[5] GLYNOS C,BIBLI S I,KATSAOUNOU P,et al.Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice[J].Am J Physiol Lung Cell Mol Physiol,2018,315(5):L662-L672.
[6] WANG J,ZHANG T,JOHNSTON C J,et al.Protein thiol oxidation in the rat lung following e-cigarette exposure[J/OL].Redox Biol,2020,37[2022-04-02].https://doi.org/10.1016/j.redox.2020.101758.
[7] GRIESE M.Pulmonary surfactant in health and human lung diseases:state of the art[J].Eur Respir J,1999,13(6):1455-1476.
[8] 魏强. 动物生物安全实验室管理和技术要点[J].中国比较医学杂志,2020,30(3):94-97.
WEI Q.Issues of animal experiments in biosafety laboratories[J].Chin J Comp Med,2020,30(3):94-97.
[9] LAYDEN J E,GHINAI I,PRAY I,et al.Pulmonary illness related to e-cigarette use in Illinois and Wisconsin-final report[J].N Engl J Med,2020,382(10):903-916.
[10] 崔紫阳,刘朝,程安琪,等.电子烟对人体健康的影响研究进展[J].中华健康管理学杂志,2020,14(6):596-600.
CUI Z Y,LIU C,CHENG A Q,et al.Research progress on the effect of electronic cigarette on human health[J].Chin J Health Manag,2020,14(6):596-600.
[11] PHILLIPS B,TITZ B,KOGEL U,et al.Toxicity of the main electronic cigarette components, propylene glycol,glycerin,and nicotine,in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints[J]. Food Chem Toxicol,2017,109(Pt 1):315-332.
[12] LI R,SUN Q,LAM S M,et al.Sex-dependent effects of ambient PM2.5 pollution on insulin sensitivity and hepatic lipid metabolism in mice[J].Part Fibre Toxicol,2020,17(1):1-14.
[13] MATUTE-BELLO G,DOWNEY G,MOORE B B,et al.An official American Thoracic Society workshop report:features and measurements of experimental acute lung injury in animals[J].Am J Respir Cell Mol Biol,2011,44(5):725-738.
[14] KIEFMANN M,TANK S,TRITT M O,et al.Dead space ventilation promotes alveolar hypocapnia reducing surfactant secretion by altering mitochondrial function[J].Thorax,2019,74(3):219-228.
[15] STRAYER D S,KORUTLA L.Activation of surfactant protein-B transcription:signaling through the SP-A receptor utilizing the PI3 kinase pathway[J].J Cell Physiol,2000,184(2):229-238.
[16] WHITSETT J A,WEAVER T E.Hydrophobic surfactant proteins in lung function and disease[J].N Engl J Med,2002,347(26):2141-2148.
[17] SORENSEN G L.Surfactant protein D in respiratory and non-respiratory diseases[J/OL].Front Med,2018,5[2022-04-02].https://doi.org/10.3389/fmed.2018.00018.
[1] 徐倩倩, 朱莹莹, 丁十戈, 金秋妍, 董莹. 宁波市中学生电子烟使用调查[J]. 预防医学, 2023, 35(9): 814-819.
[2] 高颖, 孙乐成, 王莉莉, 黄银凤, 吴英锋. 海南省中学生电子烟使用情况调查[J]. 预防医学, 2023, 35(8): 655-658,664.
[3] 张少峰, 李志恒, 王仲峰. 尘肺96例IL-6、CRP、D-D、Fib检测结果分析[J]. 预防医学, 2023, 35(4): 320-322.
[4] 彭佳, 曹友琴, 荣冬芸, 刘玉杰, 吕宝坤, 曹煜. 贵阳市在校大学生电子烟相关知识、态度、行为调查[J]. 预防医学, 2023, 35(3): 253-257.
[5] 沈婷, 蔡永环, 张静敏, 胡艺俨, 靳颖, 许俊. 西湖区健康促进学校初中学生电子烟使用调查[J]. 预防医学, 2022, 34(8): 776-781.
[6] 彭嗣惠, 何思思, 李月, 周龙, 黄岚. 广州市居民电子烟环境暴露与电子烟使用的关系研究[J]. 预防医学, 2022, 34(5): 445-449,455.
[7] 熊依杰, 许丽娜, 白丽霞, 周文娟, 刘佳, 吴艳玲. 海淀区青少年电子烟使用现况调查[J]. 预防医学, 2022, 34(5): 471-474.
[8] 徐越, 胡秀静, 陈赫妮, 张雪海, 吴青青, 姚丁铭, 徐水洋. 浙江省成人卷烟和电子烟使用现况调查[J]. 预防医学, 2022, 34(5): 439-444.
[9] 杨桂丽, 陈镭, 韦巧慧, 陈红丹, 郑小莲. 温州市中学生卷烟和电子烟使用意向调查[J]. 预防医学, 2021, 33(8): 844-847.
[10] 李艳妮, 关素珍, 贺宝福, 马玉琴. 宁夏回族自治区青少年使用电子烟现状调查[J]. 预防医学, 2021, 33(3): 259-263.
[11] 赵鲁剑, 周华. 慢性阻塞性肺疾病患者外周血辅助性T细胞22及白细胞介素-22水平分析[J]. 预防医学, 2018, 30(9): 937-938,942.
[12] 李绍波, 陈丽丽, 赖小英, 金小红, 王昕昕. 特异性免疫治疗对哮喘大鼠肺组织RORγtmRNA表达的影响[J]. 预防医学, 2017, 29(5): 482-484.
[13] 蔡文伟, 江楠. 男性不育患者精液活性氧与精子参数的关系研究[J]. 预防医学, 2017, 29(3): 264-265,268.
[14] 郑会琴, 罗海霞, 陈晓刚. 孕妇妊娠早期和中期血细胞参数分析[J]. 预防医学, 2017, 29(12): 1271-1272,1275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed