|
|
Forecasting incidence of extended spectrum β-lactamases-producing Escherichia coli by multiple seasonal ARIMA model |
CHU Wen-jie,JIN Kai-ling,LIN Kai,SHAN Huan,CHEN Wei-guo
|
Department of Nosocomial Infection,Hangzhou,Zhejiang Hospital,Zhejiang 310013,China |
|
|
Abstract Objective To predict monthly incidents of extended spectrum β-Lactamases (ESBLs)-producing Escherichia coli in Zhejiang Hospital by establishing multiple seasonal autoregressive integrated moving average(ARIMA)model,so as to provide scientific evidence for reducing the incidents of nosocomial infection of ESBLs producing Escherichia coli. Methods Multiple seasonal ARIMA model was established by monthly records of ESBLs producing Escherichia coli from 2010 to 2016 in Zhejiang hospital. Monthly incidents of ESBLs producing Escherichia coli from 2017 to February 2018 were used to verify the predicted result. The predictions were evaluated by models of mean absolute percent error (MAPE) and bayesian information criterion(BIC). Results The optional model for the monthly incidence from 2010 to 2016 was ARIMA(0,1,1) (0,1,1)12 . The MAPE was 14.76,BIC was 2.01,and the Ljung-Box statistics value Q was 16.79 (P=0.40). These parameters suggested a good model fitting. The average relative error between the predictive value and the actual value of the monthly incidents ESBLs producing Escherichia coli from 2017 to February 2018 was 14.08%.The actual values were within the 95% confidence interval. Conclusion The multiple seasonal ARIMA model of ARIMA (0,1,1) (0,1,1 )12 fits and can be used for short-term prediction and dynamic analysis of the incidents of ESBLs producing Escherichia coli in Zhejiang Hospital.
|
Published: 06 July 2018
|
|
|
|
|
[1] BARANIAK A,IZDEBSKI R,FIETT J,et al. KPC-like carbapenemase-producing enterobacteriaceae colonizing patients in Europe and Israel[J]. Antimicrobial Agents and Chemotherapy,2015,60(3):1912-1917. [2] PITOUT J D. Extraintestinal pathogenic Escherichia coli:a combination of virulence with antibiotic resistance[J]. Front Microbiol,2012,3:9. [3] 王亚华,祝永明,邵平扬,等. 产超广谱β-内酰胺酶大肠埃希菌的耐药性分析[J]. 中华医院感染学杂志,2015,25(6):1221-1223. [4] 杨小影,宋惠萍,杨萍芝,等. 超广谱β-内酰胺酶大肠杆菌院内感染分布及耐药性研究[J]. 检验医学与临床,2014,11(12):1613-1614. [5] 王金娜,徐若君,黄大锟,等. ARIMA乘积季节模型预测永嘉县其他感染性腹泻的流行[J]. 预防医学,2017,29(2):150- 154. [6] 李杰,顾月. ARIMA模型在预测手足口病发病中的应用[J]. 预防医学,2017,29(10):987-991. [7] 于林凤,吴静,周锁兰,等. ARIMA季节模型在我国丙肝发病预测中的应用[J]. 郑州大学学报(医学版),2014,49(3):344-348. [8] 尚红,王毓三,申子瑜. 全国临床检验操作规程[M]. 4版. 北京:人民卫生出版社,2015. [9] WAYNE P A. Clinical and Laboratory Standards Institute:Performance standards for antimicrobial susceptibility testing:20th informational supplement[J]. CLSI document M100-S20,2017. [10]杨小兵,孔德广,江高峰. ARIMA乘积季节模型在手足口病发病预测中的应用研究[J]. 中国预防医学杂志,2016,17(3):207-211. [11]BOX G E P,JENKINS G M,REINSEL G C,et al. Time series analysis:forecasting and control[M]. John Wiley & Sons,2016. [12]CHATFIELD C. The analysis of time series:an introduction[M]. CRC press,2016. [13]LEE H S,HER M,LEVINE M,et al. Time series analysis of human and bovine brucellosis in South Korea from 2005 to 2010[J]. Preventive Veterinary Medicine,2013,110(2):190-197. [14]马晓梅,刘颖,杨梦利,等. 手足口病月发病率ARIMA乘积季节模型预测探讨[J]. 现代预防医学,2017,44(9):1541- 1544,1560. [15]高云云,李军,杨海燕,等. ARIMA模型在河南省甲型病毒性肝炎发病数预测中的应用[J]. 现代预防医学,2017,44(7):1294-1298. [16]王瑜,刘光文,贾蕾. 和田市2010—2014年肠道传染病流行特征时间序列分析[J]. 中国公共卫生,2016,32(9):1265- 1267. [17]单欢,金凯玲,叶金明,等. 2010—2015年耐甲氧西林金黄色葡萄球菌医院流行趋势时间序列分析[J]. 中华医院感染学杂志,2016,26(23):5308-5311. [18]刘海鹏,金玉莲,刘光辉,等. 住院患儿医院感染发生率ARIMA时间序列模型[J]. 中国感染控制杂志,2017,16(3):243- 246. [19]黄素玲. 产超广谱β内酰胺酶大肠埃希菌的分布特点及耐药性分析[J]. 中国感染与化疗杂志,2017,17(2):182-186. [20]周华,李光辉,陈佰义,等. 中国产超广谱β-内酰胺酶肠杆菌科细菌感染应对策略专家共识[J]. 中华医学杂志,2014,94(24):1847-1856. [21]丁晓艳,彭志行,陶红,等. 运用时间序列模型对麻疹流行趋势的预测与分析[J]. 南京医科大学学报(自然科学版),2011, 31(8):1200-1203. |
|
|
|