Please wait a minute...
文章检索
预防医学  2016, Vol. 28 Issue (1): 5-8,16    
  论著 本期目录 | 过刊浏览 | 高级检索 |
广义相加模型拟合气象因素与猩红热发病的关联性
吴昊澄, 林君芬, 徐校平, 吴晨, 鲁琴宝, 丁哲渊
浙江省疾病预防控制中心,浙江 杭州 310051
An analysis on the correlations between the scarlet fever and meteorological factors with generalized additive model
WU Hao-cheng, LIN Jun-fen, XU Xiao-ping, WU Chen, LU Qin-bao, DING Zhe-yuan
The Center for Disease Control and Prevention of Zhejiang province,Hangzhou, Zhejiang, 310051, China
全文: PDF(679 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的探索气象因素与猩红热发病的关联性。方法收集浙江省2005—2014年猩红热月发病数据以及同期气温、气压等气象资料,应用广义相加模型分析气象因素与猩红热发病之间的关联程度和形式。结果平均水汽压、日照时数与猩红热发病间存在负关联;降水量、平均气压、平均风速、平均气温与猩红热发病间均存在较复杂的非线性关系,其中平均气压、平均风速和平均气温对猩红热发病影响呈近似二次曲线关系。平均气压<10 050(0.1 hPa)时是正效应;在18.7~23.6(0.1 m/s)风速范围内,对猩红热发病有较小的正效应;平均气温在<250(0.1 ℃)时,对猩红热发病的影响负效应逐渐减弱。结论气象因素与猩红热发病之间存在较复杂的非线性关系,降水量、气压、风速以及温度与猩红热发病可能存在关联。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴昊澄
林君芬
徐校平
吴晨
鲁琴宝
丁哲渊
关键词 广义相加模型猩红热气象因素关联性    
Abstract:ObjectiveTo explore the correlations between the scarlet fever and meteorological factors in Zhejiang Province. MethodsThe data which was been analyzed including month case of scarlet fever and meteorological factors from JAN 2005 to DEC 2014, were analyzed for the degree and characteristic of the correlations between the scarlet fever and meteorological factors with generalized additive model(GAM) . ResultsThere were negative correlation between scarlet fever and meteorological factors including water vapor pressure and hours of sunshine. There were complex nonlinear correlations between scarlet fever and meteorological factors including precipitation, average barometric pressure, average wind speed and average temperature . The relationship between scarlet fever and meteorological factors including average barometric pressure, average wind speed and average temperature showed approximate quadratic function. The precipitation above3 500(0.1 mm), average barometric pressure above 10 200(0.1 hPa) and under 10 050(0.1 hPa), average wind speed between 18.7-23.6(0.1 m/s)and average temperature between 100-250(0.1 ℃) were the suitable meteorological condition for scarlet fever.ConclusionThere were complex nonlinear correlations between the scarlet fever and meteorological factors. Precipitation,average barometric pressure,average wind speed and average temperature may be associated with the incidence of scarlet fever.
Key wordsGeneralized additive model    Scarlet fever    Meteorological factors    Relationship
收稿日期: 2015-06-24      修回日期: 2015-07-17      出版日期: 2016-01-10
中图分类号:  R188  
  R515.1  
基金资助:浙江省医药卫生科技计划(2015RCB008); 卫生应急准备和处置关键技术研究与推广(201202006)
通信作者: 吴昊澄,E-mail:hchwu@cdc.zj.cn   
作者简介: 吴昊澄,硕士,主管医师,主要从事传染病监测与统计分析工作
引用本文:   
吴昊澄, 林君芬, 徐校平, 吴晨, 鲁琴宝, 丁哲渊. 广义相加模型拟合气象因素与猩红热发病的关联性[J]. 预防医学, 2016, 28(1): 5-8,16.
WU Hao-cheng, LIN Jun-fen, XU Xiao-ping, WU Chen, LU Qin-bao, DING Zhe-yuan. An analysis on the correlations between the scarlet fever and meteorological factors with generalized additive model. Preventive Medicine, 2016, 28(1): 5-8,16.
链接本文:  
http://www.zjyfyxzz.com/CN/      或      http://www.zjyfyxzz.com/CN/Y2016/V28/I1/5
[1] YANG S G,DONG H J,LI F R,et al.Report and analysis of a scarlet fever outbreak among adults through food-borne transmission in China[J]. J Infection,2007,55(5):419-424.
[2] 李雷雷,蒋希宏,隋霞,等.中国2005—2011年猩红热疫情流行病学分析[J].中国公共卫生,2012,28(6):826-827.
[3] 李连红,余昭,方琼姗,等.2007—2011年浙江省猩红热流行病学分析[J].中国预防医学杂志,2013,14(3):194-196.
[4] 杨芬,钟豪杰,洪腾,等.广东省1950—2011年猩红热发病趋势变化及流行特征分析[J].华南预防医学,2013,39(1):1-5.
[5] YANG P, PENG X M, ZHANG D T, et al. Characteristics of group A Streptococcus strains circulating during scarlet fever epidemic, Beijing, China, 2011[J]. Emerg infect Dis, 2013,19(6): 909-915.
[6] CHEN M L, YAO W L, WANG X H, et al. Outbreak of scarlet fever associated with emm12 type group A streptococcus in 2011 in Shanghai, China[J]. Pediatr Infect Dis J, 2012,31(9): e158-162.
[7] LUK E Y Y, LO J Y C, LI A Z L, et al. Scarlet fever epidemic,Hong Kong, 2011[J]. Emerg infect Dis, 2012,18(10): 1658-1661.
[8] WILSON N , LUSH D, BAKER M G.Meteorological and climate change themes at the 2010 International Conference on Emerging Infectious Diseases[J].Euro Surveill:bulletin Européen sur les maladies transmissibles=European communi cable disease bulletin,2010,15(11):225-227.
[9] 王炳翔.猩红热发病率与气象因素之间的多项式模型拟合研究[D].合肥:安徽医科大学,2014.
[10] 李宏田,袁悦,李智文,等.GAM识别非线性相关及其在医学统计建模中的应用[J].中国卫生统计,2012,29(6):782-785.
[11] 陶芳芳,虞慧婷,林庆能,等.广义相加模型在上海世博会园区医疗站就诊人数预测中的应用[J].环境与职业医学,2011,28(1):9-12.
[12] 吴蘅.大气污染与哮喘急诊量关系的统计研究[D]. 成都:四川大学,2007.
[13] 赵越.大气污染对城市居民的健康效应及经济损失研究[D].北京:中国地质大学,2007.
[14] 洪希成,陈曦,徐兴建,等.湖沼地区钉螺密度与环境关系的广义相加模型研究[J].现代预防医学,2014,41(18):3265-3267.
[15] 王炳翔,朋文佳,闫军伟,等.猩红热的发病率与气象因素的负二项回归分析[J].中华疾病控制杂志,2014,18(2):166-168.
[16] 黎景雪,王培承,房刚.山东省猩红热发病与气象因素相关性研究[J].中国预防医学杂志,2011,12(2):149-151.
[17] 黎新宇,王全意,高婷,等.北京气象因素与猩红热发病相关性研究[J].实用预防医学,2007,14(5):1435-1436.
[18] 闫国琦.气象要素对人体健康的影响[J].卫生职业教育,2005,23(23):125-126.
[19] 郭莉莉,苏镇军,罗光华,等.邯郸市猩红热发病率与气象因素之间关系的研究[J].医学动物防制,2014,30(7):739-741.
[20] 吕爱华,苏君.大气微生物与气象条件及大气污染物的灰色关联分析[J].干旱环境监测,1995,9(3):143-146.
[21] 李秀昌,孙健,胡亚男.长春地区气候与传染病间关系分析[J].中国卫生统计,2010,27(1):66-67.
[1] 吕晓丽, 朱一, 竹军伟. 纳入气象因素的ARIMAX模型预测流行性感冒流行趋势[J]. 预防医学, 2021, 33(8): 780-783.
[2] 张丽, 姚英, 胡锦峰, 潘忠廉, 宋姝娟, 黄春萍. 上城区VCT门诊求询者梅毒与HIV感染的关联分析[J]. 预防医学, 2021, 33(6): 583-585.
[3] 张艳丽, 张培, 徐承中, 吴周志, 徐英, 鲁芳芳. 空气污染与急性心肌梗死的相关性研究[J]. 预防医学, 2021, 33(5): 479-483.
[4] 曹洋, 杨丽梅, 坑斌, 刘羽. 居民每日死亡例数与空气污染物日均浓度的关系[J]. 预防医学, 2021, 33(3): 231-235.
[5] 李明, 吴亚兰, 郭江林, 王莎莎, 汪伟伟. 绍兴市居民高温中暑与气象因素的相关性研究[J]. 预防医学, 2019, 31(3): 251-254.
[6] 王金娜, 劳家辉, 侯娟, 郭颂, 吴瑜燕, 马晓, 徐荣, 龚震宇. 气象因素对鼠密度的影响研究[J]. 预防医学, 2018, 30(9): 870-873,878.
[7] 何佳璐, 李鹏, 张永利, 易井萍. 舟山市PM2.5浓度与气象因素的关系研究[J]. 预防医学, 2018, 30(12): 1245-1247,1251.
[8] 蒋莹, 罗晓亮, 娄静, 杨燕. 建德市手足口病发病与气象因素的相关性分析[J]. 预防医学, 2018, 30(12): 1267-1268,1271.
[9] 崔策, 张燕, 宋静. 三种预警模型的猩红热预警效果比较[J]. 预防医学, 2018, 30(10): 1040-1043.
[10] 翟羽佳, 李傅冬, 尚晓鹏, 何凡, 林君芬. 气象因素与发热伴血小板减少综合征关联研究[J]. 预防医学, 2016, 28(2): 117-120.
[11] 朱娜, 胡金飞. eNOS基因T-786C和G894T单核苷酸多态性与冠心病关系的病例对照研究[J]. 预防医学, 2016, 28(1): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed