Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (6): 644-648    DOI: 10.19485/j.cnki.issn2096-5087.2025.06.022
  实验技术 本期目录 | 过刊浏览 | 高级检索 |
耐药基因突变结核分枝杆菌的sigma因子表达分析
江丽娜, 高丽, 王志锐, 王秀月, 戴文汐
天津市结核病控制中心,天津 300011
Sigma factor expression in drug resistance gene mutations of Mycobacterium tuberculosis
JIANG Lina, GAO Li, WANG Zhirui, WANG Xiuyue, DAI Wenxi
Tianjin Center for Tuberculosis Control, Tianjin 300011, China
全文: PDF(884 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 分析耐药基因突变结核分枝杆菌(MTB)的sigma因子表达,为结核病耐药机制研究提供参考。方法 收集天津市结核病控制中心2018—2022年门诊患者临床痰标本,经MTB培养获得阳性菌株899株,采用体外表型药敏试验确定492株表型敏感菌株和407株表型耐药菌株;随机抽取30株敏感菌株和符合耐药表型的98株耐药菌株,采用熔解曲线分析法检测MTB耐药基因突变位点,分为未检测到突变基因的敏感菌株、单基因突变耐异烟肼菌株inhA突变或katG突变、单基因突变耐利福平菌株rpoB突变,以及多基因突变耐多药菌株inhA+rpoB突变或katG+rpoB突变。采用荧光定量PCR检测sigma因子mRNA相对表达量,并以实验菌株与标准菌株sigma因子mRNA相对表达量比值>2筛选高表达sigma因子;分析耐药基因突变菌株与敏感菌株sigma因子mRNA相对表达量和高表达率差异。结果 纳入敏感菌株30株,耐药菌株90株;其中,单基因突变耐异烟肼菌株inhA突变16株、katG突变22株,单基因突变耐利福平菌株rpoB突变13株和多基因突变耐多药菌株inhA+rpoB突变15株、katG+rpoB突变24株。与敏感菌株sigma因子相比,inhA突变菌株sigG、sigI因子,katG突变菌株sigF、sigG、sigH、sigI、sigJ、sigL因子,rpoB突变菌株、inhA+rpoB突变菌株和katG+rpoB突变菌株sigF、sigG、sigH、sigJ、sigL因子mRNA相对表达量较高(均P<0.05);inhA突变菌株sigI因子,katG突变菌株、inhA+rpoB突变菌株sigF、sigG、sigI、sigJ、sigL因子,rpoB突变菌株、katG+rpoB突变菌株sigF、sigG、sigH、sigJ、sigL因子高表达率较高(均P<0.05)。结论 与敏感MTB菌株相比,sigI因子仅在单耐异烟肼菌株中mRNA相对表达量和高表达率较高,sigF、sigG、sigJ和sigL因子在katG突变菌株、rpoB突变菌株和耐多药菌株中mRNA相对表达量和高表达率较高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江丽娜
高丽
王志锐
王秀月
戴文汐
关键词 结核分枝杆菌耐药基因sigma因子    
AbstractObjective To analyze the expression of sigma factor in drug resistance gene mutations of Mycobacterium tuberculosis (MTB), so as to provide a reference for the drug resistance mechanism of tuberculosis. Methods Clinical sputum specimens of outpatients at Tianjin Center for Tuberculosis from 2018 to 2022 were collected. A total of 899 MTB-positive strains were obtained by culture, and 492 phenotypically sensitive strains and 407 phenotypically resistant strains were identified by an in vitro phenotypic drug susceptibility test. Thirty drug-sensitive strains of MTB were randomly selected, and 98 drug-resistant strains with specific resistance phenotypes were chosen; all were subjected to melting curve analysis for detection of drug-resistance gene mutations. The strains were divided into sensitive strains without gene mutation, isoniazid-resistant strains with inhA mutation or katG mutation, rifampicin-resistant strains with rpoB mutation, and multigene mutation-resistant strains with inhA+rpoB mutation or katG+rpoB mutation. The mRNA relative expression of sigma factor was detected by fluorescence quantitative PCR, and the ratio of sigma factor mRNA relative expression between the experimental strain and the standard strain >2 was used to screen for highly expressed sigma factor. The differences in sigma factor mRNA relative expression and high expression rate between drug-resistant gene mutant strains and sensitive strains were analyzed. Results Thirty sensitive strains and 90 drug-resistant strains were included. Among them, there were 16 strains with inhA mutation, 22 strains with katG mutation, 13 strains with rpoB mutation, 15 strains with inhA+rpoB mutation, and 24 strains with katG+rpoB mutation. Compared to the sigma factors of the sensitive strains, the mRNA expression levels of sigG and sigI in inhA-mutated strains, sigF, sigG, sigH, sigI, sigJ, and sigL in katG-mutated strains, and sigF, sigG, sigH, sigJ, and sigL in rpoB-mutated, inhA+rpoB-mutated, and katG+rpoB-mutated strains were significantly higher (all P<0.05). Additionally, the high-expression rates of sigI in inhA-mutated strains, sigF, sigG, sigI, sigJ, and sigL in katG-mutated and inhA+rpoB-mutated strains, and sigF, sigG, sigH, sigJ, and sigL in rpoB-mutated and katG+rpoB-mutated strains were also higher (all P<0.05). Conclusion Compared to sensitive MTB strains, sigI showed higher relative expression of mRNA and high-expression rate in inhA-mutated strains, and sigF, sigG, sigJ, and sigL had higher mRNA relative expression and high-expression rates in katG-mutated, rpoB-mutated, and multi-drug-resistant strains.
Key wordsMycobacterium tuberculosis    drug resistance gene    sigma factor
收稿日期: 2025-01-16      修回日期: 2025-06-04      出版日期: 2025-06-10
中图分类号:  R378.91+1  
基金资助:天津市卫生健康科研项目资助(TJWJ2022MS047)
作者简介: 江丽娜,博士,副主任技师,主要从事结核病实验室检测工作,E-mail:jianglina868@163.com
引用本文:   
江丽娜, 高丽, 王志锐, 王秀月, 戴文汐. 耐药基因突变结核分枝杆菌的sigma因子表达分析[J]. 预防医学, 2025, 37(6): 644-648.
JIANG Lina, GAO Li, WANG Zhirui, WANG Xiuyue, DAI Wenxi. Sigma factor expression in drug resistance gene mutations of Mycobacterium tuberculosis. Preventive Medicine, 2025, 37(6): 644-648.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.06.022      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I6/644
[1] GOLETTI D,MEINTJES G,ANDRADE B B,et al.Insights from the 2024 WHO Global Tuberculosis Report-More Comprehensive Action,Innovation,and Investments required for achieving WHO End TB goals[J/OL].Int J Infect Dis,150[2025-06-04].https://doi.org/10.1016/j.ijid.2024.107325.
[2] 田丽,周伟,黄星,等.中国异烟肼耐药结核分枝杆菌基因突变特征分析[J].中国防痨杂志,2022,44(4):354-361.
TIAN L,ZHOU W,HUANG X,et al.Analysis of genetic mutation characteristics of isoniazid-resistant Mycobacterium tuberculosis in China[J].Chin J Antituberc,2022,44(4):354-361.(in Chinese)
[3] 杨彩虹,张萍,买买提艾力·艾合木提,等.结核分枝杆菌利福平耐药突变位点分析及耐药性快速检测[J].中国病原生物学杂志,2021,16(12):1387-1392.
YANG C H,ZHANG P,MAIMAITIAILI A H M T,et al.Analysis of rifampicin-resistant mutation sites and rapid detection of drug resistance in Mycobacterium tuberculosis[J].J Pathog Biology,2021,16(12):1387-1392.(in Chinese)
[4] EMILY C W,SHONNA M M.Regulation of antimicrobial resistance by extracytoplasmic function(ECF)sigma factors[J].Microbes Infect,2017,19(4):238-248.
[5] 江丽娜. 结核分枝杆菌σ因子的调节机制和功能[J].职业与健康,2019,35(4):561-565.
JIANG L N.Regulatory mechanisms and functions of sigma factors in Mycobacterium tuberculosis [J].Occup and Health,2019,35(4):561-565.(in Chinese)
[6] MANGANELLI R,CIOETTO-MAZZABÒ L,SEGAFREDDO G,et al.SigE:a master regulator of Mycobacterium tuberculosis[J].Front Microbiol,2023,7(3):1-8.
[7] 江丽娜,穆成,孙蕊,等.即时痰和体外培养条件下结核分枝杆菌sigma因子表达差异分析[J].公共卫生与预防医学,2023,34(3):52-55.
JIANG L N,MU C,SUN R,et al.Analysis of expression differences of sigma factors in Mycobacterium tuberculosis under immediate sputum and in vitro culture conditions[J].J Public Health Prev Med,2023,34(3):52-55.(in Chinese)
[8] 江丽娜,高丽,王志锐,等.Sigma因子基因表达与结核分枝杆菌异烟肼耐药关系探讨[J].中国热带医学,2024,24(3):299-303.
JIANG L N,GAO L,WANG Z R,et al.Study on the relationship between sigma factor gene expression and isoniazid resistance in Mycobacterium tuberculosis[J].China Trop Med,2024,24(3):299-303.(in Chinese)
[9] 江丽娜,高丽,王志锐,等.结核分枝杆菌异烟肼或利福平不同耐药表型中sigma因子表达差异研究[J].疾病监测,2024,39(9):1198-1203.
JIANG L N,GAO L,WANG Z R,et al.Study on expression differences of sigma factors in different drug-resistant phenotypes of Mycobacterium tuberculosis to isoniazid or rifampicin[J].Dis Surveill,2024,39(9):1198-1203.(in Chinese)
[10] 车洋,杨天池,平国华,等.外排泵基因Rv1456cRv1457cRv1458c表达与结核分枝杆菌耐药关系探讨[J].疾病监测,2019,34(6):1-5.
CHE Y,YANG T C,PING G H,et al.Study on the relationship between the expression of efflux pump genes Rv1456c,Rv1457c,Rv1458c and drug resistance in Mycobacterium tuberculosis[J].Dis Surveill,2019,34(6):1-5.(in Chinese)
[11] VERGNE I,CHUA J,SINGH S B,et al.Cellbiology of Mycobacterium tuberculosis phagosome[J].Annu Rev Cell Dev Biol,2004,20(1):367-394.
[12] MICHELE T M,KO C,BISHAI W R.Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene:implications for chemotherapy against mycobacterial persistors[J].Antimicrob Agents Chemother,1999,43(2):218-225.
[13] MISRA R,MENON D,ARORA G,et al.Tuning the Mycobacterium tuberculosis alternative sigma factor sigF through the multidomain regulator Rv1364c and osmosensory kinase protein kinase D[J/OL].J Bacteriol,2019,201(7)[2025-06-04].https://doi.org/10.1128/JB.00725-18.
[14] CIOETTO-MAZZABÒ L,BOLDRIN F,BEAUVINEAU C,et al.SigH stress response mediates killing of Mycobacterium tuberculosis by activating nitronaphthofuran prodrugs via induction of Mrx2 expression[J].Nucleic Acids Res,2023,51(1):144-165.
[15] YEW W W,CHAN D P,CHANG K C,et al.Does oxidative stress contribute to antituberculosis drug resistance[J].J Thorac Dis,2019,11(7):100-102.
[16] OCAMPO P S,LAZAR V,PAPP B,et al.Antagonism between bacteriostatic and bactericidal antibiotics is prevalent[J].Antimicrob Agents Chemother,2014,58(8):4573-4582.
[1] 黄银燕, 王勐, 徐翔. 纳米孔靶向测序技术鉴定分枝杆菌及分析结核分枝杆菌耐药性[J]. 预防医学, 2025, 37(6): 640-644,648.
[2] 吕阳, 乐博昕, 胡伟宏, 刘园, 陈昶, 刘效峰. 肺结核密切接触学生结核分枝杆菌潜伏感染的影响因素分析[J]. 预防医学, 2024, 36(8): 658-662.
[3] 王慧, 李锦成, 陆兴, 王金富, 竺丽梅, 刘巧. 重组结核杆菌融合蛋白皮肤试验筛查HIV/AIDS病例结核分枝杆菌潜伏感染的效果分析[J]. 预防医学, 2024, 36(7): 639-643.
[4] 邱曼玲, 江毅, 李梦映, 潘小炎. 在校学生结核潜伏感染及预防性治疗研究进展[J]. 预防医学, 2024, 36(1): 30-33.
[5] 王远航, 胡洁, 葛锐, 富小飞, 亓云鹏. 嘉兴市结核分枝杆菌耐药情况分析[J]. 预防医学, 2023, 35(8): 705-709.
[6] 雷蓉蓉, 张婷, 吴成果, 罗建奎, 汪清雅, 任昌理. 南川区居民结核潜伏感染调查[J]. 预防医学, 2022, 34(4): 371-374.
[7] 纪律, 刘晓俊, 余云芳, 余枫华, 周攀. 宜昌市耐药结核分枝杆菌MIRU-VNTR分子特征及耐药基因突变分析[J]. 预防医学, 2021, 33(2): 149-152.
[8] 卢丽英, 詹丽杏. 大肠埃希菌O157:H7抗生素耐药性研究进展[J]. 预防医学, 2021, 33(11): 1117-1121.
[9] 叶静芬, 方晴, 胡耀仁, 许小敏, 车洋. 北京基因型耐多药结核分枝杆菌二线抗结核药物耐药基因突变特征分析[J]. 预防医学, 2021, 33(10): 983-987.
[10] 朱业蕾, 潘爱珍, 周琳, 柳正卫, 张明五, 吴坤阳, 王晓萌, 吴蓓蓓. 浙江省非结核分枝杆菌流行状况及耐药性分析[J]. 预防医学, 2021, 33(1): 6-10.
[11] 郭海萍, 尚媛媛, 李姗姗, 逄宇. 全基因组测序在结核病分子流行病学研究中的应用[J]. 预防医学, 2020, 32(9): 899-903.
[12] 高华强, 卢巧玲, 金法祥, 孟海滨, 孙佳美, 许树红. 绍兴市肺结核患者耐药特征分析[J]. 预防医学, 2020, 32(4): 384-387.
[13] 贾庆军, 谢立, 吴亦斐, 王乐, 陆敏, 赵刚. 杭州市结核病患者耐药检测结果分析[J]. 预防医学, 2019, 31(3): 289-292.
[14] 曾松芳,韩安棣,郭美丽,陈维增,陈阿德. 苍南县75株医院感染耐碳青霉烯类鲍曼不动杆菌耐药基因分析[J]. 预防医学, 2019, 31(11): 1131-1135.
[15] 赵丰权, 戴建义, 李君桦, 蔡玉伟, 董培红. 黄芩苷体内抑制结核分枝杆菌的机制研究[J]. 预防医学, 2019, 31(10): 998-1000,1006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed