Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (6): 640-644,648    DOI: 10.19485/j.cnki.issn2096-5087.2025.06.021
  实验技术 本期目录 | 过刊浏览 | 高级检索 |
纳米孔靶向测序技术鉴定分枝杆菌及分析结核分枝杆菌耐药性
黄银燕1, 王勐1, 徐翔2
1.杭州市疾病预防控制中心(杭州市卫生监督所),浙江 杭州 310021;
2.杭州圣庭医疗科技有限公司,浙江 杭州 311113
Identification of Mycobacterium and analysis of drug resistance in Mycobacterium tuberculosis using nanopore targeted sequencing technology
HUANG Yinyan1, WANG Meng1, XU Xiang2
1. Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang 310021, China;
2. Hangzhou Shengting Medical Technology Co., Ltd, Hangzhou, Zhejiang 311113, China
全文: PDF(895 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 应用纳米孔靶向测序技术鉴定分枝杆菌及分析结核分枝杆菌耐药性,为结核病快速诊断提供方法参考。方法 收集结核病定点医院2022年3—11月18~80岁临床高度怀疑为结核分枝杆菌感染并诊断为分枝杆菌感染的患者样本进行纳米孔靶向测序技术检测,分析分枝杆菌的检出情况、结核分枝杆菌耐药种类和基因突变位点。结果 收集200份样本,其中呼吸道样本160份,非呼吸道样本40份。纳米孔靶向测序技术检出分枝杆菌阳性194份,检测敏感性为97.00%(95%CI:93.28%~98.77%);检出结核分枝杆菌阳性187份,检出率为93.50%;检出非结核分枝杆菌7份,检出率为3.50%。纳米孔靶向测序技术检出利福平耐药基因rpoB的核酸突变位点11个,异烟肼耐药基因katG的核酸突变位点1个和inhA的核酸突变位点2个,乙胺丁醇耐药基因embB的核酸突变位点3个,链霉素耐药基因rpsL的核酸突变位点2个和rrs的核酸突变位点1个,吡嗪酰胺耐药基因pncA的核酸突变位点11个,氟喹诺酮类耐药基因gyrA的核酸突变位点6个和gyrB的核酸突变位点2个,氨基糖苷类耐药基因rrs的核酸突变位点3个。纳米孔靶向测序技术完成1份样本检测耗时5~6 h。结论 纳米孔靶向测序技术检测分枝杆菌的敏感性较高,可检出7种抗结核药物9个耐药基因42个核酸突变位点,耗时较短,在结核病快速诊断和耐药基因分析方面有一定适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄银燕
王勐
徐翔
关键词 纳米孔靶向测序分枝杆菌耐药基因    
AbstractObjective To identify Mycobacterium and analyze the drug resistance of Mycobacterium tuberculosis by using nanopore targeted sequencing technology, so as to provide the methodological reference for the rapid diagnosis of tuberculosis. Methods Samples from patients aged 18 to 80 years old who were highly suspected of Mycobacterium tuberculosis infection and diagnosed with Mycobacterium tuberculosis infection in designated tuberculosis hospitals from March to November 2022 were collected for nanopore targeted sequencing technology. The detection status of Mycobacterium, types of Mycobacterium tuberculosis drug resistance, and gene mutation sites were analyzed. Results A total of 200 samples were collected, including 160 respiratory tract samples and 40 non-respiratory tract samples. Nanopore targeted sequencing technology detected 194 positive mycobacterial samples, with a detection sensitivity of 97.00% (95%CI: 93.28%-98.77%). There were 187 positive cases of Mycobacterium tuberculosis and 7 cases of nontuberculous mycobacteria, with detection rates of 93.50% and 3.50%, respectively. Nanopore targeted sequencing technology identified 11 mutations in the rifampicin resistance gene rpoB, 1 mutation in the isoniazid resistance gene katG, 2 mutations in the gene inhA, 3 mutations in the ethambutol resistance gene embB, 2 mutations in the streptomycin resistance gene rpsL, 1 mutation in the gene rrs, 11 mutations in the pyraz inamide resistance gene pncA, 6 mutations in the fluoroquinolone resistance gene gyrA, 2 mutations in the gene gyrB, and 3 mutations in the aminoglycoside resistance gene rrs. It took 5-6 hours to complete the detection of one sample using nanopore targeted sequencing technology. Conclusions The nanopore targeted sequencing technology has high sensitivity for detecting Mycobacterium tuberculosis and can identify 42 nucleic acid mutation sites in 9 drug resistance genes associated with 7 anti-tuberculosis drugs. It is time-efficient and has certain applicability in the rapid diagnosis of tuberculosis and the analysis of drug resistance genes.
Key wordsnanopore targeted sequencing    Mycobacterium    drug resistant gene
收稿日期: 2024-11-19      修回日期: 2025-02-05      出版日期: 2025-06-10
中图分类号:  R446.5  
  R52  
基金资助:杭州市科技局引导项目(20220919Y060)
作者简介: 黄银燕,硕士,副主任技师,主要从事结核病的预防和控制工作
通信作者: 王勐,E-mail:wangm@hzcdc.com.cn   
引用本文:   
黄银燕, 王勐, 徐翔. 纳米孔靶向测序技术鉴定分枝杆菌及分析结核分枝杆菌耐药性[J]. 预防医学, 2025, 37(6): 640-644,648.
HUANG Yinyan, WANG Meng, XU Xiang. Identification of Mycobacterium and analysis of drug resistance in Mycobacterium tuberculosis using nanopore targeted sequencing technology. Preventive Medicine, 2025, 37(6): 640-644,648.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.06.021      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I6/640
[1] World Health Organization.Global tuberculosis report 2023[R].Geneva:WHO,2023.
[2] 余泽林,李月,夏辉,等.结核分枝杆菌体外药敏试验标准株的建立与评价[J].疾病监测,2023,38(12):1460-1465.
YU Z L,LI Y,XIA H,et al.Establishment of Chinese reference strains for in vitro drug sensitivity testing of Mycobacterium tuberculosis[J].Dis Surveill,2023,38(12):1460-1465.(in Chinese)
[3] BAINOMUGISA A,GILPIN C,COULTER C,et al.New Xpert MTB/XDR:added value and future in the field[J].Eur Clin Respir J,2020,56(5):1-5.
[4] 王少华,赵国连,王佩,等.结核分枝杆菌利福平基因型药敏和表型药敏检测结果不一致原因分析[J].中国防痨杂志,2022,44(2):169-173.
WANG S H,ZHAO G L,WANG P,et al.Analysis of inconsistency between genotypic and phenotypic results of Mycobacterium tuberculosis rifampicin susceptibility test[J].Chin J Antituberc,2022,44(2):169-173.(in Chinese)
[5] WANG Y H,ZHAO Y,BOLLAS A,et al.Nanopore sequencing technology and its applications in basic and applied research[J].Nat Biotechnol,2021,39(11):1348-1365.
[6] 杨晨,高卫卫,郭羿成,等.纳米孔靶向测序在分枝杆菌鉴定和耐药基因检测中的研究进展[J].中国防痨杂志,2024,46(5):578-583.
YANG C,GAO W W,GUO Y C,et al.Research progress of nanopore targeted sequencing in Mycobacterium identification and drug resistance gene detection[J].Chin J Antituberc,2024,46(5):578-583.(in Chinese)
[7] 李中浤,杜彩丽,林彦锋,等.纳米孔测序技术在环境微生物研究中的应用[J].生物工程学报,2022,38(1):5-13.
LI Z H,DU C L,LIN Y F,et al.Application of nanopore sequencing in environmental microbiology research[J].Chin J Biotech,2022,38(1):5-13.(in Chinese)
[8] CRUCIANI M,SCARPARO C,MALENA M,et al.Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB,with or without solid media,for detection of Mycobacteria[J].J Clin Microbiol,2004,42(5):2321-2325.
[9] HUANG Y Y,LI Q S,LI Z D,et al.Rapid diagnosis of Mycobacterium marinum infection using targeted nanopore sequencing:a case report[J].Front Cell Infect Microbiol,2023,13:1-6.
[10] HALL M B,RABODOARIVELO M S,KOCH A,et al.Evaluation of nanopore sequencing for Mycobacterium tuberculosis drug susceptibility testing and outbreak investigation:a genomic analysis[J].Lancet Microbe,2023,4(2):84-92.
[11] 《中国防痨杂志》编辑委员会,中国医疗保健国际交流促进会结核病防治分会基础学组和临床学组.结核分枝杆菌耐药性检测专家共识[J].中国防痨杂志,2019,41(2):129-137.
Editorial Board of Chinese Journal of Anti tuberculosis,Basic and Clinical Groups of Tuberculosis Control Branch of China International Exchange and Promotive Association for Medical and Health Care.Expert consensus on the detection of drug resistance in Mycobacterium tuberculosis[J].Chin J Antituberc,2019,41(2):129-137.(in Chinese)
[12] 赵雁林,逄宇.结核病实验室检验规程[M].北京:人民卫生出版社,2015.
ZHAO Y L,PANG Y.Laboratory procedures for tuberculosis testing[M].Beijing:People's Medical Publishing House,2015.(in Chinese)
[13] CABIBBE A M,SPITALERI A,BATTAGLIA S,et al.Application of targeted next-generation sequencing assay on a portable sequencing platform for culture-free detection of drug-resistant tuberculosis from clinical samples[J].J Clin Microbiol,2020,58(10):1-9.
[14] BRANDIS G,HUGHES D.Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu,the rifampicin resistance mutation most frequently found in clinical isolates[J].J Antimicrob Chemother,2013,68(11):2493-2497.
[15] LI Y F,KONG X L,SONG W M,et al.Genomic analysis of lineage-specific transmission of multidrug resistance tuberculosis in China[J].Emerg Microbes Infect,2024,13(1):1-14.
[16] WANG Y L,LI Q L,GAO H X,et al.The roles of rpsL,rrs,and gidB mutations in predicting streptomycin-resistant drugs used on clinical Mycobacterium tuberculosis isolates from Hebei Province,China[J].Int J Clin Exp Pathol,2019,12(7):2713-2721.
[17] World Health Organization.Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance(second edition)[EB/OL].[2025-02-05].Geneva:WHO,2023.https://www.who.int/publications/i/item/9789240082410.
[1] 孙卫锋, 吕锐, 胡喜荣, 徐刚, 戴莉莉. 老年住院脑卒中患者医院获得性肺炎病原菌分布及耐药性分析[J]. 预防医学, 2021, 33(12): 1256-1259.
[2] 王奕雯, 梁志强, 顾时平, 叶炜, 张政. 安吉县食品食源性致病菌检测结果[J]. 预防医学, 0, (): 732-735.
[3] 朱业蕾, 潘爱珍, 周琳, 柳正卫, 张明五, 吴坤阳, 王晓萌, 吴蓓蓓. 浙江省非结核分枝杆菌流行状况及耐药性分析[J]. 预防医学, 2021, 33(1): 6-10.
[4] 吴跃进, 林冠凯, 章乐怡, 李毅, 楼辉煌, 洪程基, 王良怀, 谢爱蓉, 胡玉琴. 温州市禽肉中空肠弯曲菌检测结果及耐药性分析[J]. 预防医学, 2020, 32(7): 686-688.
[5] 方芳, 赵丽丽, 徐庆嵩, 宋冰. 呼吸科住院病例医院感染病原菌分布及耐药性分析[J]. 预防医学, 2020, 32(4): 369-372.
[6] 陆飞越, 王建华, 马春晓, 张军, 董丽娟. 平湖市市售水产品中致病性弧菌检测结果[J]. 预防医学, 2020, 32(1): 88-90.
[7] 曾松芳,韩安棣,郭美丽,陈维增,陈阿德. 苍南县75株医院感染耐碳青霉烯类鲍曼不动杆菌耐药基因分析[J]. 预防医学, 2019, 31(11): 1131-1135.
[8] 杨晓芳,谢建华,章秋霞. 下呼吸道感染主要病原菌耐药性分析[J]. 预防医学, 2018, 30(9): 930-932.
[9] 高蕾,楼永良. 高速RT-PCR法检测手足口病肠道病毒效果评价[J]. 预防医学, 2018, 30(8): 858-860.
[10] 周丽华,强鑫华,王萍. 159株致泻大肠埃希菌病原学特征分析[J]. 预防医学, 2018, 30(6): 614-615.
[11] 王日春, 许玲英, 宋冰, 叶琴. 某医院大肠埃希菌分布及耐药性分析[J]. 预防医学, 2017, 29(8): 812-814.
[12] 蒋蓉, 陈学军, 周明明, 方潮, 吕建新. 住院婴儿呼吸道脲原体生物群和耐药性分析[J]. 预防医学, 2017, 29(3): 231-235.
[13] 管姝瑾, 缪小红, 胡丽娅, 黄东梅. 儿童肺炎主要病原菌分布及耐药性分析[J]. 预防医学, 2017, 29(3): 298-299,303.
[14] 徐庆嵩,宋群波,方芳,王建利. 重症监护室患者医院感染病原菌菌群分布特点及耐药性分析[J]. 预防医学, 2017, 29(2): 187-190.
[15] 罗学辉, 黄邵军, 陈立锋, 李永东, 高红. 余姚市鼠形动物携带汉坦病毒及M基因分析[J]. 预防医学, 2016, 28(8): 789-791,795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed