Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (3): 302-306    DOI: 10.19485/j.cnki.issn2096-5087.2022.03.018
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
双酚类化合物对BRL 3A肝细胞增殖、氧化应激和致突变作用研究
张真, 洪颖, 盖雅婷, 林丽花, 翁鹭娜, 李玲玲
厦门市食品药品质量检验研究院药理科,福建 厦门 361012
Effects of bisphenols on proliferation and oxidative stress of BRL 3A rat liver cells and their mutagenicities
ZHANG Zhen, HONG Ying, GAI Yating, LIN Lihua, WENG Luna, LI Lingling
Department of Pharmacology, Xiamen Institute for Food and Drug Quality Control, Xiamen, Fujian 361012, China
全文: PDF(830 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 比较双酚A(BPA)、双酚S(BPS)、双酚F(BPF)和双酚AF(BPAF)对大鼠BRL 3A肝细胞增殖及氧化应激的影响,并研究其致基因突变作用。方法 体外培养的BRL 3A肝细胞分别暴露于0、5、10、25、50、100、150和200 μmol/L的BPA、BPS、BPF和BPAF,48 h后采用CCK-8法测定细胞存活率,计算半数抑制浓度(IC50);选择对细胞增殖有抑制作用的最低浓度,采用DCFH-DA荧光探针法检测BRL 3A肝细胞内活性氧(ROS)水平,反映细胞氧化应激程度;采用Ames试验研究1 000、200、40、8和1.6 μg/皿的4种双酚类化合物对组氨酸营养缺陷型鼠伤寒沙门菌(TA1535、TA97a、TA98、TA100和TA102)回变菌落的影响。结果 BPA和BPF在100~200 μmol/L,BPAF在25~200 μmol/L,肝细胞存活率随浓度增加而明显下降,BPS在5~200 μmol/L,肝细胞存活率无明显变化;BPA、BPS、BPF和BPAF对BRL 3A肝细胞的IC50分别为131.7、>200、187.5和21.6 μmol/L。BPS(100 μmol/L)和BPAF(25 μmol/L)未引起ROS水平明显变化;BPA(100 μmol/L)和BPF(100 μmol/L)显著升高ROS水平。Ames试验结果显示,4种双酚类化合物对TA1535、TA97a、TA98、TA100和TA102均未呈现致基因突变作用。结论 BPAF对BRL 3A肝细胞的毒性最大,BPS低剂量暴露的影响较小;双酚类化合物对肝细胞的毒性效应可能与诱导氧化应激有关。在本试验条件下,4种双酚类化合物均未呈现致基因突变性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张真
洪颖
盖雅婷
林丽花
翁鹭娜
李玲玲
关键词 双酚类化合物BRL 3A肝细胞氧化应激Ames试验致突变性    
AbstractObjective To examine the effects of bisphenol A (BPA), bisphenol S ( BPS ), bisphenol F ( BPF ) and bisphenol AF ( BPAF ) on the proliferation and oxidative stress of BRL 3A rat liver cells, and to preliminarily evaluate their mutagenicities. Methods In vitro cultured BRL 3A rat liver cells were treated with BPA, BPS, BPF and BPAF at concentrations of 0, 5, 10, 25, 50, 100, 150 and 200 μmol/L for 48 h, respectively. Then, the cell viability was determined using the CCK-8 assay, and the half maximal inhibitory concentration ( IC50 ) was calculated. The minimum inhibitory concentration for BRL 3A cell proliferation was screened, and the intracellular reactive oxygen species ( ROS ) was measured in BRL 3A cells using the 2',7'-dichlorodihydrofluorescein diacetate ( DCFH-DA ) assay. In addition, the effects of BPA, BPS, BPF and BPAF at concentrations of 1 000, 200, 40, 8 and 1.6 μg/plate on the mutant colonies of histidine-deficient Salmonella typhimurium ( TA1535, TA97a, TA98, TA100 and TA102 ) were tested using the Ames test. Results Treatment with BPA and BPF at concentrations of 100 to 200 μmol/L and with BPAF at concentrations of 25 to 200 μmol/L inhibited BRL 3A cell survival at a concentration-dependent manner, while exposure to BPS at concentrations of 5 to 200 μmol/L resulted in no changes in BRL 3A cell survival. The IC50 values of BPA, BPS, BPF and BPAF were 131.7, >200, 187.5 and 21.6 μmol/L against BRL 3A cells, respectively. Treatment with BPS at 100 μmol/L or BPAF at 25 μmol/L caused no significant changes in the ROS level; however, exposure to BPA at 100 μmol/L and BPF at 100 μmol/L significantly increased the ROS level. Ames test showed that BPA, BPS, BPF and BPAF did not induce mutagenicity in TA1535, TA97a, TA98, TA100 or TA102 strains. Conclusions BPAF shows the highest cytotoxicity to BRL 3A cells, and low-concentration exposure to BPS has few effects on BRL 3A cells. The cytotoxicity of bisphenols against BRL 3A cells may be associated with the induction of oxidative stress. None of the four bisphenols show mutagenic effects under the present experimental conditions.
Key wordsbisphenols    BRL 3A rat liver cells    oxidative stress    Ames test    mutagenicity
收稿日期: 2021-11-08      修回日期: 2021-12-30      出版日期: 2022-03-10
中图分类号:  R114  
基金资助:厦门市市场监督管理局科技计划项目(XMSJ201910)
通信作者: 张真,E-mail:albumen_zz@163.com   
作者简介: 张真,博士,副主任药师,主要从事药理毒理检验与研究工作
引用本文:   
张真, 洪颖, 盖雅婷, 林丽花, 翁鹭娜, 李玲玲. 双酚类化合物对BRL 3A肝细胞增殖、氧化应激和致突变作用研究[J]. 预防医学, 2022, 34(3): 302-306.
ZHANG Zhen, HONG Ying, GAI Yating, LIN Lihua, WENG Luna, LI Lingling. Effects of bisphenols on proliferation and oxidative stress of BRL 3A rat liver cells and their mutagenicities. Preventive Medicine, 2022, 34(3): 302-306.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.03.018      或      http://www.zjyfyxzz.com/CN/Y2022/V34/I3/302
[1] CHEN D,KANNAN K,TAN H L,et al.Bisphenol analogues other than BPA:environmental occurrence,human exposure,and toxicity-a review[J].Environl Sci Technol,2016,50(11):5438-5453.
[2] WANG K,ZHAO Z G,JI W.Bisphenol A induces apoptosis,oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner[J/OL].Biomed Pharmacother,2019,117(2019-07-01)[2021-12-30].https://doi.org/10.1016/j.biopha.2019.109182.
[3] USMAN A,AHMAD M.From BPA to its analogues:is it a safe journey?[J].Chemosphere,2016,158:131-142.
[4] ZHANG R,LIU R T,ZONG W S.Bisphenol S interacts with catalase and induces oxidative stress in mouse liver and renal cells[J].J Agric Food Chem,2016,64(34):6630-6640.
[5] KOSE O,RACHIDI W,BEAL D,et al.The effects of different bisphenol derivatives on oxidative stress,DNA damage and DNA repair in RWPE-1 cells:a comparative study[J].J Appli Toxicol,2020,40(5):643-654.
[6] XIN L L,LIN Y,WANG A Q,et al.Cytogenetic evaluation for the genotoxicity of bisphenol-A in Chinese hamster ovary cells[J].Environ Toxicol Pharmacol,2015,40(2):524-529.
[7] 张真,翁鹭娜,洪颖,等.双酚S的毒理学效应及其作用机制的研究进展[J].食品工业科技,2018,39(2):344-351.
ZHANG Z,WENG L N,HONG Y,et al.Research progress on toxicological effects and mechanism of bisphenol S[J]. Sci Technol Food Ind,2018,39(2):344-351.
[8] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.化学品细菌回复突变试验方法:GB/T 21786—2008[S].北京:中国标准出版社,2008.
General Administration of Quality Supervision,Inspection and Quarantine,Standardization Administration of the People's Republic of China.Chemicals-Test method of bacterial reverse mutation:GB/T 21786-2008[S].Beijing:Standards Press of China,2008.
[9] 王晓萌,张萍,钟儒刚,等.Ames试验的剂量效应关系及统计学方法探讨[J].中国卫生检验杂志,2013,23(15):3151-3154.
WANG X M,ZHANG P,ZHONG R G,et al.Study on dose-effect relationship and statistical analysis of Ames test[J].Chin J Health Lab Technol,2013,23(15):3151-3154.
[10] PEYRE L,ROUIMI P,DE SOUSA G,et al.Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells:a focus on their potential involvement in nonalcoholic fatty liver disease[J].Food Chem Toxicol,2014,70:9-18.
[11] FENG Y X,JIAO Z H,SHI J C,et al.Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells[J].Chemosphere,2016,147:9-19.
[12] RUSSO G,CAPUOZZO A,BARBATO F,et al.Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data[J].Chemosphere,2018,201:432-440.
[13] WANG K,ZHAO Z G,WU J.Bisphenol A induces apoptosis,oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner[J/OL]. Biomed Pharmacother,2019,117(2019-07-01)[2021-12-30].https://doi.org/10.1016/j.biopha.2019.109182.
[14] PIAO X M,LIU Z R,LI Y Y,et al.Investigation of the effect for bisphenol A on oxidative stress in human hepatocytes and its interaction with catalase[J/OL].Spectrochim Acta A Mol Biomol Spectrosc,2019,221(2019-03-22)[2021-12-30].https://doi.org/10.1016/j.saa.2019.117149.
[15] MAĆCZAK A,CYRKLER M,BUKOWSKA B,et al.Bisphenol A,bisphenol S,bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells(in vitro study)[J].Toxicol In Vitro,2017,41:143-149.
[16] HUANG M Q,LIU S,FU L,et al.Bisphenol A and its analogues bisphenol S,bisphenol F and bisphenol AF induce oxidative stress and biomacromolecular damage in human granulosa KGN cells[J/OL].Chemosphere,2020,253(2020-08-09)[2021-12-30].https://doi.org/10.1016/j.chemosphere.2020.126707.
[17] FIC A,ŽEGURA B,SOLLNER DOLENC M,et al.Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells[J]. Arh Hig Rada Toksikol,2013,64(2):189-200.
[1] 赵乾秀, 白宇超, 白淼, 张灿, 张传福. 哺乳动物微塑料暴露的毒理机制研究进展[J]. 预防医学, 2023, 35(4): 303-306.
[2] 彭雪云, 吴南翔, 范宏亮, 白洁, 舒而怡, 陶核. 污水处理厂污泥及微塑料暴露对斑马鱼氧化应激水平的影响[J]. 预防医学, 2023, 35(3): 190-195.
[3] 胡炀, 王晓峰, 陈志健, 徐沛维, 楼晓明. 双酚类化合物暴露及健康影响研究进展[J]. 预防医学, 2022, 34(8): 799-802.
[4] 朱玲慧, 鲁英, 张露艺. 孕期PAHs暴露与胎盘线粒体拷贝数的关联研究[J]. 预防医学, 2022, 34(3): 248-252.
[5] 夏海玲, 蒋兆强, 冯玲芳, 余珉, 张敏, 陈钧强, 张幸, 楼建林. 石棉作业对人体氧化应激水平的影响[J]. 预防医学, 2022, 34(1): 1-5,10.
[6] 孙慧聪, 洪训宇, 韩冠亚, 孙胜珍, 祁世杰, 吴昊. 人脐带源间充质干细胞移植对肝纤维化大鼠氧化应激的影响[J]. 预防医学, 2021, 33(6): 642-646.
[7] 程玥, 毛竹君, 张芯, 夏旭芬. 黄芪多糖缓解HepG2细胞胰岛素抵抗模型的分子机制研究[J]. 预防医学, 2020, 32(2): 121-124.
[8] 宋燕华, 蔡德雷, 鹿伟, 徐彩菊, 陈苘. 丹参水提物对小鼠免疫和氧化应激功能的影响[J]. 预防医学, 2019, 31(8): 862-864.
[9] 蔡德雷, 宋燕华, 徐彩菊, 鹿伟, 夏勇, 傅剑云, 沈海涛. 低剂量持久性有机污染物暴露对大鼠的影响[J]. 预防医学, 2019, 31(6): 558-563.
[10] 周程, 吴南翔, 范宏亮, 杨叶, 高明, 陈蝶, 沈宏. TCS和PCB153联合暴露对斑马鱼肝脏SOD和MDA的影响[J]. 预防医学, 2019, 31(4): 330-334.
[11] 刘弢, 唐非, 邵国健, 李辉, 张鹏. 湖州市饮用水中非挥发性有机物致突变性分析[J]. 预防医学, 2019, 31(10): 1045-1047.
[12] 余智, 于民, 顾苏兵, 邵晓莉, 洪小琴, 张腾. [Gly14]-Humanin对局灶性脑缺血再灌注损伤大鼠氧化应激及神经细胞凋亡的影响[J]. 预防医学, 2018, 30(1): 55-58,62.
[13] 杨叶青,刘波,徐广平,陈小华,毛显雅. 氧化应激相关指标在慢性肾脏病诊断中的价值[J]. 预防医学, 2017, 29(4): 338-341.
[14] 蔡文伟, 江楠. 男性不育患者精液活性氧与精子参数的关系研究[J]. 预防医学, 2017, 29(3): 264-265,268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed