Please wait a minute...
文章检索
预防医学  2023, Vol. 35 Issue (3): 190-195    DOI: 10.19485/j.cnki.issn2096-5087.2023.03.002
  论著 本期目录 | 过刊浏览 | 高级检索 |
污水处理厂污泥及微塑料暴露对斑马鱼氧化应激水平的影响
彭雪云, 吴南翔, 范宏亮, 白洁, 舒而怡, 陶核
杭州医学院公共卫生学院,浙江 杭州 310013
Effects of sewage treatment plant sludge and microplasticexposure on oxidative stress levels in zebrafish
PENG Xueyun, WU Nanxiang, FAN Hongliang, BAI Jie, SHU Eryi, TAO He
School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
全文: PDF(890 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 观察污水处理厂污泥及污泥中微塑料暴露对斑马鱼氧化应激水平的影响,为污泥及微塑料对人类健康的影响研究提供依据。方法 选择野生AB型成年斑马鱼,按0、12.5、25、50、75 g/L设计5个污泥暴露组,从污泥中提取微塑料,按0、240、480、960个/L设计4个微塑料暴露组,每组投放24尾斑马鱼。每日观察斑马鱼体色、活动力和死亡情况;分别在暴露0 h、24 h、48 h、72 h、96 h、7 d后检测斑马鱼体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽(GSH)和丙二醛(MDA)含量,并采用双因素方差分析评价暴露浓度和时间对上述指标的影响。结果 75 g/L污泥暴露下,斑马鱼72 h开始出现死亡,7 d后全部死亡;其他浓度污泥组和所有微塑料组斑马鱼体色、活动均正常,未见死亡。污泥暴露浓度与暴露时间交互影响SOD、CAT、GSH和MDA(均P<0.05);随污泥暴露浓度和时间增加,斑马鱼体内SOD呈下降趋势;CAT呈先上升后下降趋势;GSH呈先下降后上升趋势,75 g/L组24 h开始GSH持续降低;MDA呈上升趋势。微塑料暴露浓度与暴露时间交互影响SOD、GSH(P<0.05),而对CAT、MDA不存在交互作用(P>0.05);随微塑料暴露浓度和时间增加,斑马鱼体内SOD略有上升;CAT呈先上升后下降趋势;GSH在24 h略有升高,72 h后出现下降趋势;MDA呈上升趋势。结论 污泥及其中所含的微塑料均可诱发斑马鱼氧化应激损伤,暴露时间和浓度可交互影响氧化应激水平;污泥中提取的微塑料对斑马鱼氧化应激水平的影响比污泥小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭雪云
吴南翔
范宏亮
白洁
舒而怡
陶核
关键词 污泥微塑料氧化应激    
AbstractObjective To investigate the effects of the exposure of sludge from sewage treatment plants and microplastic extracted from sludge on the oxidative stress levels in zebrafish, so as to put insights into the research into the impact of sludge and microplastics on human health. Methods Adult wild AB zebrafish were exposed to five groups of sludge (0, 12.5, 25, 50 and 75 g/L) and four groups of microplastics extract from sludge (0, 240, 480, 960/L), with 24 zebrafish in each group. The color, activity and death of zebrafish were observed every day. The contents of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) were detected 0 h, 24 h, 48 h, 72 h, 96 h and 7 d post-exposure. A two-factor ANOVA was used to analyze the effects of different concentrations and time of exposure on the indicators above. Results Under 75 g/L sludge exposure, zebrafish began to show mortality at 72 h and all died after 7 d. The zebrafish in the other sludge groups and all microplastic groups had normal color and activity, and no mortality was observed. Sludge concentration interacted with exposure time to affect SOD, CAT, GSH and MDA (P<0.05). With increasing sludge concentration and exposure time, SOD decreased, MDA increased, CAT increased first and then decreased, GSH decreased first and then increased, and GSH continued to decrease since 24 h in the 75 g/L group. The microplastic concentration interacted with exposure time to affect SOD and GSH (P<0.05), but not CAT or MDA (P>0.05). With increasing microplastic concentration and exposure time, SOD and MDA increased, CAT increased first and then decreased, the GSH was slightly increased at 24 h and decreased after 72 h. Conclusion Both sludge and microplastics extracted from sludge can induce oxidative stress damage in zebrafish, and exposure time and concentration can interact to affect oxidative stress levels. The microplastics extracted from sludge have less effect on oxidative stress levels in zebrafish than sludge.
Key wordssludge    microplastics    oxidative stress
收稿日期: 2023-01-04      修回日期: 2023-02-10      出版日期: 2023-03-10
中图分类号:  R123.3  
基金资助:浙江省科技厅院所专项(1921D)
作者简介: 彭雪云,硕士研究生在读
通信作者: 吴南翔,E-mail:zamewu@163.com   
引用本文:   
彭雪云, 吴南翔, 范宏亮, 白洁, 舒而怡, 陶核. 污水处理厂污泥及微塑料暴露对斑马鱼氧化应激水平的影响[J]. 预防医学, 2023, 35(3): 190-195.
PENG Xueyun, WU Nanxiang, FAN Hongliang, BAI Jie, SHU Eryi, TAO He. Effects of sewage treatment plant sludge and microplasticexposure on oxidative stress levels in zebrafish. Preventive Medicine, 2023, 35(3): 190-195.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2023.03.002      或      http://www.zjyfyxzz.com/CN/Y2023/V35/I3/190
[1] 何云. 新时期城市污水处理厂污泥的处置与综合利用[J].资源节约与环保,2022(7):73-76.
[2] 张伟军,张彧,潘思逸.污泥处理过程中毒害有机污染物的迁移转化规律与毒性效应[J].安全与环境工程,2022,29(2):183-198.
[3] ZOU Y,YE C,PAN Y.Abundance and characteristics of microplastics in municipal wastewater treatment plant effluent:a case study of Guangzhou,China[J].Environ Sci Pollut Res Int,2021,28(9):11572-11585.
[4] LI X,CHEN L,MEI Q,et al.Microplastics in sewage sludge from the wastewater treatment plants in China[J].Water Res,2018,142:75-85.
[5] 高向荣,侯乐莹,盛静浩.微塑料健康危害效应的研究进展[J].预防医学,2020,32(8):800-804.
[6] 赵乾秀,白宇超,白淼,等.微塑料对哺乳动物的毒理机制研究进展[J].预防医学,2023,35(3):218-221.
[7] THOMPSON R C,OLSEN Y,MITCHELL R P,et al.Lost at sea:where is all the plastic?[J/OL].Science,2004,304(5672)[2023-02-10].https://doi.org/10.1126/science.1094559.
[8] CONSTANT M,BILLON G,BRETON N,et al.Extraction of microplastics from sediment matrices:experimental comparative analysis [J/OL].J Hazard Mater,2021,420[2023-02-10].https://doi.org/10.1016/j.jhazmat.2021.126571.
[9] FRIDOVICH I.Superoxide radical and superoxide dismutases[J].Annu Rev Biochem,1995,64:97-112.
[10] MOREL Y,BAROUKI R.Repression of gene expression by oxidative stress[J].Biochem J,1999,342(Part 3):481-496.
[11] XIE D,LI Y,LIU Z,et al.Inhibitory effect of cadmium exposure on digestive activity,antioxidant capacity and immune defense in the intestine of yellow catfish(Pelteobagrus fulvidraco)[J].Comp Biochem Physiol Toxicol Pharmacol,2019,222:65-73.
[12] CALABRESE E J,BALDWIN L A.The hormetic dose-response model is more common than the threshold model in toxicology[J].Toxicol Sci,2003,71(2):246-250.
[13] 何雅琪,任宗明.基于在线生物监测系统的氨氮胁迫下斑马鱼行为响应[J].水生生物学报,2022,46(6):903-913.
[14] 薛凌展,吴素琼,张坤,等.氨氮对异育银鲫“中科3号”幼鱼急性毒性及肝脏抗氧化酶系统的影响[J].农学学报,2019,9(3):44-50.
[15] EROGLU A,DOGAN Z,KANAK E G,et al.Effects of heavy metals(Cd,Cu,Cr,Pb,Zn)on fish glutathione metabolism[J].Environ Sci Pollut Res Int,2015,22(5):3229-3237.
[16] ALLEN T,RANA S V.Effect of arsenic(AsⅢ) on glutathione-dependent enzymes in liver and kidney of the freshwater fish Channa punctatus[J].Biol Trace ElemRes,2004,100(1):39-48.
[17] 徐琨,杨爱江,胡霞,等.锑在斑马鱼不同组织中的积累及其对抗氧化系统的影响[J].生物技术通报,2021,37(4):145-154.
[18] GUTTERIDGE J M.Lipid peroxidation and antioxidants as biomarkers of tissue damage[J].Clin Chem,1995,41(12):1819-1828.
[1] 赵乾秀, 白宇超, 白淼, 张灿, 张传福. 哺乳动物微塑料暴露的毒理机制研究进展[J]. 预防医学, 2023, 35(4): 303-306.
[2] 朱玲慧, 鲁英, 张露艺. 孕期PAHs暴露与胎盘线粒体拷贝数的关联研究[J]. 预防医学, 2022, 34(3): 248-252.
[3] 张真, 洪颖, 盖雅婷, 林丽花, 翁鹭娜, 李玲玲. 双酚类化合物对BRL 3A肝细胞增殖、氧化应激和致突变作用研究[J]. 预防医学, 2022, 34(3): 302-306.
[4] 夏海玲, 蒋兆强, 冯玲芳, 余珉, 张敏, 陈钧强, 张幸, 楼建林. 石棉作业对人体氧化应激水平的影响[J]. 预防医学, 2022, 34(1): 1-5,10.
[5] 孙慧聪, 洪训宇, 韩冠亚, 孙胜珍, 祁世杰, 吴昊. 人脐带源间充质干细胞移植对肝纤维化大鼠氧化应激的影响[J]. 预防医学, 2021, 33(6): 642-646.
[6] 高向荣, 侯乐莹, 盛静浩. 微塑料健康危害效应的研究进展[J]. 预防医学, 2020, 32(8): 800-804.
[7] 程玥, 毛竹君, 张芯, 夏旭芬. 黄芪多糖缓解HepG2细胞胰岛素抵抗模型的分子机制研究[J]. 预防医学, 2020, 32(2): 121-124.
[8] 宋燕华, 蔡德雷, 鹿伟, 徐彩菊, 陈苘. 丹参水提物对小鼠免疫和氧化应激功能的影响[J]. 预防医学, 2019, 31(8): 862-864.
[9] 蔡德雷, 宋燕华, 徐彩菊, 鹿伟, 夏勇, 傅剑云, 沈海涛. 低剂量持久性有机污染物暴露对大鼠的影响[J]. 预防医学, 2019, 31(6): 558-563.
[10] 周程, 吴南翔, 范宏亮, 杨叶, 高明, 陈蝶, 沈宏. TCS和PCB153联合暴露对斑马鱼肝脏SOD和MDA的影响[J]. 预防医学, 2019, 31(4): 330-334.
[11] 余智, 于民, 顾苏兵, 邵晓莉, 洪小琴, 张腾. [Gly14]-Humanin对局灶性脑缺血再灌注损伤大鼠氧化应激及神经细胞凋亡的影响[J]. 预防医学, 2018, 30(1): 55-58,62.
[12] 杨叶青, 刘波, 徐广平, 陈小华, 毛显雅. 氧化应激相关指标在慢性肾脏病诊断中的价值[J]. 预防医学, 2017, 29(4): 338-341.
[13] 蔡文伟, 江楠. 男性不育患者精液活性氧与精子参数的关系研究[J]. 预防医学, 2017, 29(3): 264-265,268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed