Please wait a minute...
文章检索
预防医学  2018, Vol. 30 Issue (1): 26-30    DOI: 10.19485/j.cnki.issn2096-5087.2018.01.007
  论著 本期目录 | 过刊浏览 | 高级检索 |
低浓度大气颗粒物短期暴露对小鼠肺组织损伤效应研究
张世鑫, 朱周靓, 夏勇, 郑云燕, 严峻
浙江省疾病预防控制中心理化毒理所,浙江 杭州 310051
Effects of short-term exposure to ambient PM on pulmonary tissue in mice
ZHANG Shi-xin, ZHU Zhou-jing, XIA Yong, ZHENG Yun-yan, YAN Jun
Zhejiang Provincial Center for Disease Control and Prevention,Hangzhou,Zhejiang 310051,China
全文: PDF(879 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 建立低浓度大气颗粒物(PM)短期暴露小鼠模型,探讨低浓度大气PM短期暴露对小鼠肺组织的影响。方法 20只6周龄BALB/c小鼠随机分为PM暴露组和阴性对照组,PM暴露组暴露于未过滤空气,阴性对照组暴露于经高效空气过滤器过滤的空气,每天暴露24 h,持续2周。观察小鼠体重等指标变化,计数支气管肺泡灌洗液(BALF)细胞并分类,采用苏木精-伊红(HE)染色法观察肺部病理学形态变化,荧光定量PCR法检测肺组织细胞色素P450 1A1(CYP1A1)和O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT) mRNA的表达。结果 PM暴露组平均PM2.5浓度为(99.7±51.6)μg/m3。协方差分析结果显示,两组小鼠体重增重差异无统计学意义(P>0.05);与阴性对照组比较,PM暴露组小鼠BALF中巨噬细胞数量增加(P<0.01),但两组粒细胞数和淋巴细胞数差异均无统计学意义(P>0.05);PM暴露组小鼠肺组织病变率为50.0%,高于阴性对照组的0.0%(P=0.033);PM暴露组小鼠肺组织CYP1A1和MGMT mRNA表达量均高于阴性对照组(P<0.05)。结论 低浓度PM短期暴露可诱导小鼠肺组织发生炎症反应,上调CYP1A1和MGMT基因表达,对小鼠肺组织产生毒性效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张世鑫
朱周靓
夏勇
郑云燕
严峻
关键词 大气颗粒物暴露细胞色素P4501A1O6-甲基鸟嘌呤-DNA甲基转移酶    
AbstractObjective To establish a mouse model for short-term exposure to ambient PM and to investigate the impact on the Cytochrome P450 1A1(CYP1A1)and O6-methylguanine-DNA methyltransferase(MGMT)mRNA expression. Methods Twenty 6-week-old BALB/c mice were randomly assigned to one of two groups,each consisting of 5 male and 5 female animals. These mice were then housed in situ concurrently for 2 weeks in our lab located in urban area of Hangzhou. The first group was kept inside an individual ventilated caging(IVC)system equipped with a high-efficiency particulate-air(HEPA)filter,whereas the second was housed inside a IVC with HEPA filter removed. Then it's allowed flow-through of ambient air freely via a pipeline outside. Mice inside the HEPA filtration chamber were therefore protected from exposure to all airborne particulate. The other was in fact exposed to ambient air directly. After the exposure,the bronchoalveolar lavage(BAL)fiuid was collected for each animal and the differentials and percentages of BAL cells were determined. Paraffin sections of lungs of the mice were made and were examined for any inflammation changes. CYP1A1 and MGMT mRNA levels in the lungs were then detected by RT-qPCR. Results The mean concentration of PM2.5 was(99.7±51.6)μg/m3 in the exposure group. Weight increases were similar between the two groups(P>0.05). The number of total cells and macrophages in BALF from exposure mice was significantly greater than control.A mild inflammation was observed from light photomicrographs of the lung after PM exposure. CYP1A1 and MGMT mRNA levels were significantly up-regulated in the lung from the exposure group. Conclusion A mouse model for short-term exposure to ambient PM was established. CYP1A1 and MGMT may mediate the toxic effect of PM exposure.
Key wordsParticulate matter    Exposure    Cytochrome P450 1A1    O6-methylguanine-DNA methyltransferase
收稿日期: 2017-06-30      修回日期: 2017-08-31      出版日期: 2018-01-04
中图分类号:  R122  
基金资助:浙江省实验动物科技计划(2015C37127)
通信作者: 张世鑫,E-mail:shxzhang@cdc.zj.cn   
作者简介: 张世鑫,硕士,医师,主要从事毒理学检验工作
引用本文:   
张世鑫, 朱周靓, 夏勇, 郑云燕, 严峻. 低浓度大气颗粒物短期暴露对小鼠肺组织损伤效应研究[J]. 预防医学, 2018, 30(1): 26-30.
ZHANG Shi-xin, ZHU Zhou-jing, XIA Yong, ZHENG Yun-yan, YAN Jun. Effects of short-term exposure to ambient PM on pulmonary tissue in mice. Preventive Medicine, 2018, 30(1): 26-30.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2018.01.007      或      http://www.zjyfyxzz.com/CN/Y2018/V30/I1/26
[1] 中华人民共和国环境保护部. 2015年中国环境状况公报[Z]. 2016:17.
[2] LU F,XU D,CHENG Y,et al. Systematic review and meta- analysis of the adverse health effects of ambient PM 2.5 and PM 10 pollution in the Chinese population[J]. Environ Res,2015, 136:196-204.
[3] FARRAJ A K,WALSH L,HAYKAL-COATES N,et al. Cardiac effects of seasonal ambient particulate matter and ozone co-exposure in rats[J]. Part Fibre Toxicol,2015,12:12.
[4] WANG X,JIANG S,LIU Y,et al. Comprehensive pulmonary metabolome responses to intratracheal instillation of airborne fine particulate matter in rats[J]. Sci Total Environ,2017,592:41-50.
[5] SHI L,ZANOBETTI A,KLOOG I,et al. Low-concentration PM 2.5 and mortality:estimating acute and chronic effects in a population-based Study[J]. Environ Health Perspect,2016,124(1):46-52.
[6] MAKAR M,ANTONELLI J,DI Q,et al. Estimating the causal effect of low levels of fine particulate matter on hospitalization[J]. Epidemiology,2017,28(5):627-634.
[7] DI Q,WANG Y,ZANOBETTI A,et al. Air pollution and mortality in the medicare population[J]. N Engl J Med,2017,376(26):2513-2522.
[8] USEPA. Integrated Science Assessment for Particulate Matter[M]. Washington,D.C:EPA,2009.
[9] 杨克敌. 环境卫生学[M]. 6版. 北京:人民卫生出版社,2007:494.
[10] YOSHIZAKI K,BRITO J M,SILVA L F,et al. The effects of particulate matter on inflammation of respiratory system:Differences between male and female[J]. Sci Total Environ,2017,586:284-295.
[11] 张世鑫,伍立志,陈苘,等. 大气细颗粒物及其水提物对人支气管上皮细胞的氧化损伤效应[J]. 浙江预防医学,2016,28(4):332-335,339.
[12] 王心如. 毒理学基础[M]. 4版. 北京:人民卫生出版社,2003.
[13] WANG G,ZHAO J,JIANG R,et al. Rat lung response to ozone and fine particulate matter(PM 2.5 )exposures[J]. Environ Toxicol,2015,30(3):343-356.
[14] TAKANO H,YANAGISAWA R,ICHINOSE T,et al. Lung expression of cytochrome P450 1A1 as a possible biomarker of exposure to diesel exhaust particles[J]. Arch Toxicol,2002,76(3):146-151.
[15] TOTLANDSDAL A I,CASSEE F R,SCHWARZE P,et al. Diesel exhaust particles induce CYP1A1 and pro-inflammatory responses via differential pathways in human bronchial epithelial cells[J]. Part Fibre Toxicol,2010,7:41.
[16] CHEN C,HUA H,HAN C,et al. Prognosis value of MGMT promoter methylation for patients with lung cancer:a meta-analysis[J]. Int J Clin Exp Pathol,2015,8(9):11560-11564.
[17] CHAPPELL G,POGRIBNY I P,GUYTON K Z,et al. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens:A systematic literature review[J]. Mutat Res Rev Mutat Res,2016,768:27-45.
[18] PARK S Y,KIM K S,LEE Y M,et al. Persistent organic pollutants and promoter hypermethylation of the O(6)- methylguanine-DNA methyltransferase gene[J]. Biomarkers,2015,20(2):136-142.
[19] YOUSUF A,BHAT M Y,PANDITH A A,et al. MGMT gene silencing by promoter hypermethylation in gastric cancer in a high incidence area[J]. Cell Oncol (Dordr),2014,37(4):245- 252.
[1] 汪兴, 童娟, 梁春梅, 陶芳标. 孕期砷暴露对母婴健康影响的研究进展[J]. 预防医学, 2023, 35(7): 591-595.
[2] 翁琴, 周标. 我国沿海城市麻痹性贝类毒素污染及膳食暴露评估[J]. 预防医学, 2023, 35(6): 501-505.
[3] 赵乾秀, 白宇超, 白淼, 张灿, 张传福. 哺乳动物微塑料暴露的毒理机制研究进展[J]. 预防医学, 2023, 35(4): 303-306.
[4] 吴雪, 郑立浩, 阚绪伟, 孙继民. 安吉县狂犬病暴露人群特征分析[J]. 预防医学, 2023, 35(4): 327-330.
[5] 丁关鑫, 黄佳, 林勤, 夏荣香, 吴顺华, 张玲. 慢性亚砷酸钠染毒对大鼠肝损伤的研究[J]. 预防医学, 2022, 34(9): 887-892.
[6] 弓宇娟, 李娟, 张靖琦, 孙宇涵, 何璐阳, 王林平. 职业性铝暴露对视空间建构能力的影响研究[J]. 预防医学, 2022, 34(8): 788-793.
[7] 胡炀, 王晓峰, 陈志健, 徐沛维, 楼晓明. 双酚类化合物暴露及健康影响研究进展[J]. 预防医学, 2022, 34(8): 799-802.
[8] 彭嗣惠, 何思思, 李月, 周龙, 黄岚. 广州市居民电子烟环境暴露与电子烟使用的关系研究[J]. 预防医学, 2022, 34(5): 445-449,455.
[9] 王爱红, 李晓海, 冷朋波, 段东辉, 方兰云, 张丹丹. 低浓度苯暴露与外周血淋巴细胞miR-223和miR-155表达的关联研究[J]. 预防医学, 2022, 34(1): 11-16.
[10] 夏勇, 宋燕华, 徐彩菊, 鹿伟, 严峻, 蔡德雷, 谢佳莹. 日光紫外线暴露对小鼠皮肤损害研究[J]. 预防医学, 2022, 34(1): 95-100.
[11] 刘静, 徐沛维, 陈志健, 邵斌, 施长苗, 李胜, 王晓峰. 人群邻苯二甲酸酯暴露水平研究综述[J]. 预防医学, 2021, 33(9): 906-909,912.
[12] 牛勇, 张璘, 刘凯, 俞兵, 章荣平, 韩磊, 谢丽庄, 吴鹏, 叶萌. 水泥生产企业粉尘职业健康风险评估[J]. 预防医学, 2021, 33(6): 558-562,567.
[13] 刘红丽, 马青青, 卢素格, 翟志雷, 张二鹏, 张榕杰. 河南省蔬菜水果双酚S污染的居民膳食暴露风险评估[J]. 预防医学, 2021, 33(5): 442-445.
[14] 张榕, 刘春华, 胡爽, 李鹏翔, 魏守刚. 夜间光暴露小鼠肝脏非靶向代谢组学研究[J]. 预防医学, 2021, 33(2): 130-134.
[15] 谢华森, 宋杨, 王晓峰, 陈志健, 徐沛维, 楼晓明. 三氯生的环境浓度、人群暴露及健康风险研究进展[J]. 预防医学, 2021, 33(10): 1013-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed