Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (1): 11-16    DOI: 10.19485/j.cnki.issn2096-5087.2022.01.003
  论著 本期目录 | 过刊浏览 | 高级检索 |
低浓度苯暴露与外周血淋巴细胞miR-223和miR-155表达的关联研究
王爱红1,2, 李晓海1,2, 冷朋波1,2, 段东辉1,2, 方兰云1,2, 张丹丹1,2
1.宁波市疾病预防控制中心环境与职业卫生所,浙江 宁波 315010;
2.浙江省微量有毒化学物健康风险评估技术研究重点实验室,浙江 宁波 315010
Effect of exposure to low concentrations of benzene on miR-223 and miR-155 expression in peripheral blood lymphocytes
WANG Aihong1,2, LI Xiaohai1,2, LENG Pengbo1,2, DUAN Donghui1,2, FANG Lanyun1,2, ZHANG Dandan1,2
1. Department of Environmental and Occupational Health, Ningbo Center for Disease Control and Prevention,Ningbo, Zhejiang 315010, China;
2. Zhejiang Provincial Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals, Ningbo, Zhejiang 315010, China
全文: PDF(835 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 分析低浓度苯暴露对职业人群外周血淋巴细胞miRNA155(miR-155)和miRNA223(miR-223)表达的影响。方法 选择浙江省宁波市2家小型金属制品企业、1家中型化学原料和化学制品制造企业苯职业暴露的男性员工100人纳入苯暴露组,选择年龄匹配、无苯职业暴露的男性员工60人纳入未暴露组;通过问卷调查收集年龄、体质指数(BMI)、吸烟、饮酒、疾病史、用药史和血常规等资料。采用热解吸-气相色谱法检测工作场所苯8小时时间加权平均浓度(CTWA),采用高效液相色谱-串联质谱法检测尿8-羟基脱氧鸟苷(8-OHdG),采用荧光定量反转录PCR测定miR-155和miR-223的表达量。采用多因素logistic回归模型分析miR-155和miR-223表达的影响因素。结果 苯暴露组年龄为(31.17±7.30)岁,CTWA为0.05~0.30 mg/m3,为低浓度苯暴露;未暴露组年龄为(32.52±6.15)岁。苯暴露组与未暴露组的年龄、BMI、吸烟和饮酒构成差异均无统计学意义(P>0.05)。苯暴露组miR-155相对表达量中位数为0.953,与未暴露组的1.293比较差异无统计学意义(P>0.05);苯暴露组miR-223相对表达量中位数为0.540,低于未暴露组的1.433,差异有统计学意义(P<0.05)。多因素logistic回归分析结果显示:miR-223表达下调与苯暴露存在统计学关联(OR=2.719,95%CI:1.308~5.651)。结论 miR-223表达下调可能与低浓度苯暴露有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王爱红
李晓海
冷朋波
段东辉
方兰云
张丹丹
关键词 苯暴露微RNA外周血淋巴细胞氧化损伤    
AbstractObjective To investigate the effect of exposure to low concentrations of benzene on miR-155 and miR-223 expression in peripheral blood lymphocytes among workers with benzene exposure. Methods A hundred male employees at a risk of exposure to benzene (the exposed group) were randomly sampled from two small metal products manufacturing enterprises and one medium-sized chemical raw material and chemical products manufacturing enterprise in Ningbo City, Zhejiang Province, and 60 age-matched male employees without benzene exposure were randomly selected as the unexposed group. Age, body mass index ( BMI ), smoking status, alcohol consumption, disease history, medication history and routine blood testing results of subjects were collected using a questionnaire survey. The 8-hour time weighted average concentration ( CTWA ) of benzene was measured in the workplace using thermal desorption gas chromatography, and the urine 8-hydroxy-2' deoxyguanosine ( 8-OHdG ) levels were determined using high-performance liquid-chromatography tandem mass spectrometry (HPLC-MS/MS). The miR-155 and miR-223 expression was quantified in peripheral blood lymphocytes using quantitative fluorescent reverse transcription-polymerase chain reaction assay, and the factors affecting miR-155 and miR-223 expression were identified using multivariable logistic regression analysis. Results The subjects in the exposed group had a mean age of ( 31.17±7.30 ) years, and were exposed to low concentrations of benzene ( CTWA, 0.05 to 0.30 mg/m3 ) , while the subjects in the unexposed group had a mean age of ( 32.52±6.15 ) years. There were no significant differences between the exposed and unexposed groups in terms of age, BMI, proportion of smokers or proportion of alcohol consumers ( P>0.05 ). There was no significant difference in the median relative miR-155 expression between the exposed and unexposed groups ( 0.953 vs. 1.293, P>0.05 ), and lower median relative miR-223 expression was quantified in the exposed group than in the unexposed group ( 0.540 vs. 1.433, P<0.05 ). Multivariable logistic regression analysis revealed that down-regulation of miR-223 expression correlated with exposure to benzene ( OR=2.719, 95%CI: 1.308-5.651 ). Conclusion Down-regulation of miR-223 expression may be associated with exposure to low concentrations of benzene.
Key wordsbenzene exposure    microRNA    peripheral blood lymphocyte    oxidative damage
收稿日期: 2021-09-03      修回日期: 2021-12-01     
中图分类号:  R134  
基金资助:浙江省医药卫生科技计划项目(2020KY901); 宁波市科技局自然基金项目(2017A610272); 宁波市医学科技计划项目(2019Y29)
通信作者: 张丹丹,E-mail:317569725@qq.com   
作者简介: 王爱红,硕士,主任医师,主要从事职业健康工作
引用本文:   
王爱红, 李晓海, 冷朋波, 段东辉, 方兰云, 张丹丹. 低浓度苯暴露与外周血淋巴细胞miR-223和miR-155表达的关联研究[J]. 预防医学, 2022, 34(1): 11-16.
WANG Aihong, LI Xiaohai, LENG Pengbo, DUAN Donghui, FANG Lanyun, ZHANG Dandan. Effect of exposure to low concentrations of benzene on miR-223 and miR-155 expression in peripheral blood lymphocytes. Preventive Medicine, 2022, 34(1): 11-16.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.01.003      或      http://www.zjyfyxzz.com/CN/Y2022/V34/I1/11
[1] SCHNATTER A R,KERZIC P J,ZHOU Y,et al.Peripheral blood effectsin benzene-exposed workers[J].Chem Biol Interact,2010,184(1/2):174-181.
[2] VIANNA N J,POLAN A.Lymphomas and occupational benzene exposure[J].Lancet,1979,313(8131):1394-1395.
[3] 刘洋,张恒东,陈献文,等.苯作业工人血浆差异表达微小RNA的初步筛选与分析[J].中华劳动卫生职业病杂志,2014,32(7):511-515.
LIU Y,ZHANG H D,CHEN X W,et al.Screening and analysis of plasma microRNA profile in benzene exposed workers[J].Chin J Ind Hyg Occup Dis,2014,32(7):511-515.
[4] BAI W L,CHEN Y J,YANG J,et al.Aberrant miRNA profiles associated with chronic benzene poisoning[J].Exp Mol Pathol,2014,96(3):426-430.
[5] 中华人民共和国卫生部.血细胞分析参考区间:WS/T 405—2012[S].2012.
Ministry of Health of the People's Republic of China.Reference intervals for blood cell analysis:WS/T 405-2012[S].2012.
[6] 中华人民共和国卫生部.工作场所空气中有害物质监测的采样规范:GBZ 159—2004[S].北京:人民卫生出版社,2004.
Ministry of Health of the People's Republic of China.Specifications of air sampling for hazardous substances monitoring in the workplace:GBZ 159-2004[S].Beijing:People's Medical Publishing House,2004.
[7] 中华人民共和国国家卫生和计划生育委员会.工作场所空气有毒物质测定第66部分:苯、甲苯、二甲苯和乙苯:GBZ/T 300.66—2017[S].2017.
National Health and Family Planning Commission of the People's
Republic of China.Determination of toxic substances in workplace air-Part 66:benzene,toluene,xylene and ethyl benzene:GBZ/T 300.66-2017[S].2017.
[8] 王爱红,李晓海,冷朋波,等.低浓度苯暴露男性工人尿8-OHdG水平的影响因素[J].环境与职业医学,2020,37(3):243-248.
WANG A H,LI X H,LENG P B,et al.Influencing factors of urinary 8-OHdG concentration in male workers exposed to low levels of benzene[J].J Environ Occup Med,2020,37(3):243-248.
[9] LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J].Methods,2001,25:402-408.
[10] 朱丹霞,缪扣荣,朱远东,等.实时定量PCR检测白血病相关miRNA方法的建立[J].中国实验血液学杂志,2010,18(3):756-761.
ZHU D X,MIAO K R,ZHU Y D,et al.Detection of miRNA levels in leukemia patients by real-time quantitative PCR[J].J Exp Hematol,2010,18(3):756-761.
[11] 王秋艳,武志云,张岩,等.低浓度苯及混苯对接触工人血常规及淋巴细胞微核的影响[J].河北医药,2020,42(8):1250-1253.
WANG Q Y,WU Z Y,ZHANG Y,et al.Effects of low concentration benzene on blood routine count and lymphocyte micronucleus in exposed workers[J].Hebei Med J,2020,42(8):1250-1253.
[12] 彭艳,张磊,朱媛媛,等.杭州市苯接触作业在岗工人血常规异常及影响因素分析[J].预防医学,2020,32(10):1059-1061.
PENG Y,ZHANG L,ZHU Y Y,et al.Abnormality in routine blood tests and its influencing factors among workers exposed to benzene in Hangzhou[J].Prev Med,2020,32(10):1059-1061.
[13] KIM J H,MOON J Y,PARK E Y,et al.Changes in oxidative stress biomarker and gene expression levels in workers exposed to volatile organic compounds[J].Ind Health,2011,49(1):8-14.
[14] LIU Y,CHEN X W,NIAN Q,et al.Analysis of plasma microRNA expression profiles in a Chinese population occupationally exposed to benzene and in a population with chronic benzene poisoning[J].J Thorac Dis,2016,8(3):403-414.
[15] WEI H Y,ZHANG J,TAN K H,et al.Benzene-induced aberrant miRNA expression rofile in hematopoietic progenitor cells in C57BL/6 mice[J].Int J Mol Sci,2015,16(11):27058-27071.
[16] 叶伟国,黄浩宇,姜燃,等.氢醌处理人支气管上皮细胞(16HBE)对其miR-221及抑癌基因PTENmRNA表达的影响[J].毒理学杂志,2019,33(3):226-229.
[17] BISWAS R,MAHESH G.MicroRNA-155:a master regulator of inflammation[J].J Interferon Cytokine Res,2019,39(6):321-330.
[18] JOHNNIDIS J B,HARRIS M H,WHEELER R T,et al.Regulation of progenitor cell proliferation and granulocyte function by microRNA-223[J].Nature,2008,451(7182):1125-1129.
[19] AOKI H,TANI H,NAKAMURA K,et al.MicroRNA biomarkers for chemical hazard screening identified by RNA deep sequencing analysis in mouse embryonic stem cells[J/OL].Toxicol Appl Pharmacol,2020,392[2021-12-01].https://doi.org/10.1016/j.taap.2020.114929.
[20] 王爱红,李晓海,冷朋波.苯毒性作用机制及其与miRNA关系的研究进展[J].中华劳动卫生职业病杂志,2018,36(3):237-240.
WANG A H,LI X H,LENG P B.Research progress on toxicity mechanism of benzene and its relationship with miRNA[J].Chin J Ind Hyg Occup Dis,2018,36(3):237-240.
[1] 刘保峰, 秦汝男, 李旭东, 朱君, 曾强. 一起养殖场职业性接触性皮炎事件调查[J]. 预防医学, 2022, 34(3): 294-296.
[2] 秦汝男, 唐慧晶, 李梅莉, 刘保峰, 曾强. 不同风险评估法在纸面石膏板生产企业粉尘危害评估中的应用比较[J]. 预防医学, 2021, 33(11): 1161-1165.
[3] 顾永权, 王爱红, 毛荷明, 胡向前, 冷朋波, 苗超. 两家黑色金属铸造企业职业健康风险评估结果分析[J]. 预防医学, 2021, 33(9): 924-927,931.
[4] 张鹏, 刘弢, 张敏, 张传会, 施长苗, 闫福. 四种职业健康风险评估方法在电子元件及组件制造企业的应用比较[J]. 预防医学, 2021, 33(9): 928-931.
[5] 高美伶, 金永富, 易井萍. 某卫浴洁具制造企业职业病危害现状分析[J]. 预防医学, 2019, 31(2): 191-195.
[6] 张海蕾,尹灵富,方家阳,袁伟明,张美辨. 应用EPA吸入风险评估方法评估皮革制造企业职业健康风险[J]. 预防医学, 2018, 30(10): 1002-1006.
[7] 邹华 综述, 张美辨 审校. 工作场所纳米颗粒暴露评估方法[J]. 预防医学, 2018, 30(9): 911-916,920.
[8] 李旭东, 丁俊, 刘明, 徐海娟, 苏世标, 胡世杰. 三种职业健康风险评估方法评估涂料生产企业有机溶剂风险的应用比较[J]. 预防医学, 2018, 30(8): 794-798.
[9] 杨思佳,唐颖,宁勇,陈健. 贝叶斯决策分析法在某汽车制造企业苯职业暴露评估中的应用[J]. 预防医学, 2018, 30(8): 771-775.
[10] 张鹏, 刘弢, 李辉, 张传会, 马力, 张美辨. 两种风险评估模型在转椅家具制造企业的应用比较[J]. 预防医学, 2018, 30(2): 158-162.
[11] 边国林,王爱红,李晓海,张美辨,张增利. 三种职业健康风险评估方法在小型家具制造企业的应用研究[J]. 预防医学, 2017, 29(10): 1003-1008.
[12] 栾俞清, 张美辨, 邹华, 全长健. 家具制造企业半定量风险评估方法优化及应用研究[J]. 预防医学, 2017, 29(8): 770-776.
[13] 高薇薇, 吕沈聪, 葛淼华, 周莹, 吴小琼. 同时测定工作场所空气中21种挥发性有机物的方法研究[J]. 预防医学, 2017, 29(8): 861-864.
[14] 蒋国钦, 李明, 王莎莎, 陶建华. 铅酸蓄电池行业的半定量职业风险评估[J]. 预防医学, 2017, 29(5): 514-517.
[15] 刘弢, 张鹏, 马力, 张传会, 朱佳贤, 张美辨. 某起重机制造企业化学物质职业暴露半定量风险评估[J]. 预防医学, 2017, 29(4): 347-350,354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed