Please wait a minute...
文章检索
预防医学  2020, Vol. 32 Issue (2): 121-124    DOI: 10.19485/j.cnki.issn2096-5087.2020.02.004
  论著 本期目录 | 过刊浏览 | 高级检索 |
黄芪多糖缓解HepG2细胞胰岛素抵抗模型的分子机制研究
程玥, 毛竹君, 张芯, 夏旭芬
浙江省立同德医院检验科,浙江 杭州 310012
Molecular mechanism of astragalus polysaccharide in alleviating insulin resistance in HepG2 cells
CHENG Yue, MAO Zhujun, ZHANG Xin, XIA Xufen
Department of Endocrinology,Tongde Hospital of Zhejiang Province,Hangzhou,Zhejiang 310012,China
全文: PDF(457 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 观察黄芪多糖(AP)对HepG2细胞胰岛素抵抗模型的影响,从脂质代谢和氧化应激方面探讨其作用的分子机制。方法 HepG2细胞分为3组:对照组不进行干预处理;模型组加入200 μL含胰岛素终浓度为10-6 mol/L的细胞完全培养基,孵育48 h,建立胰岛素抵抗模型;AP组HepG2细胞胰岛素抵抗模型中加入最适浓度 AP。24 h后,采用分光光度法检测3组细胞中H2O2浓度,采用RT-PCR法检测过氧化物酶体增殖剂激活受体γ(PPARγ)的mRNA相对表达量。结果 AP可提高胰岛素抵抗模型中HepG2细胞存活率,呈一定的剂量依赖性,AP浓度为10 μM时Hep G2细胞的存活率最高,为(118.26±1.17)%。AP组、模型组和对照组HepG2细胞内H2O2浓度分别为(0.82±0.09)μM、(1.30±0.16)μM和(0.78±0.09)μM,AP组HepG2细胞中H2O2浓度较模型组降低(P<0.05),与对照组差异无统计学意义(P>0.05)。AP组、模型组和对照组HepG2细胞中PPARγ的mRNA相对表达量分别为0.96±0.04、0.51±0.05和1.00±0.11,AP组HepG2细胞中PPARγ的mRNA相对表达量较模型组升高(P<0.05),与对照组差异无统计学意义(P>0.05)。结论 在体外胰岛素抵抗模型中,AP能提高细胞存活率,降低细胞内H2O2浓度,增加PPARγ表达;AP可能影响脂质代谢途径以改善胰岛素抗体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程玥
毛竹君
张芯
夏旭芬
关键词 黄芪多糖HepG2细胞胰岛素抵抗氧化应激    
AbstractObjective To clarify the effect of astragalus polysaccharide (AP) on insulin resistance model of HepG2 cells induced by hyperinsulinemia and its underlying molecular mechanism in lipid metabolism and oxidative stress. Methods HepG2 cells were divided into three groups: the control group was treated without any intervention; the model group was treated with 200 μL cell culture medium containing 10-6 mol/L insulin for 48 hours to build an insulin resistance model; the AP group was treated with optimal concentration of AP based on an insulin resistance model. After 24 hours, the concentration of H2O2 and the expression of PPARγ in each group were detected. Results AP could improve the survival rate of insulin-resistant HepG2 cells in a dose-dependent manner. The highest survival rate of the cells was (118.26±1.17)% with 10 μM AP. The concentration of H2O2 in the AP group was (0.82±0.09) μM, which was lower than (1.30±0.16) μM in the model group (P<0.05), but was close to (0.78±0.09) μM in the control group (P>0.05). The relative mRNA expression of PPARγ in the AP group was 0.96±0.04, which was higher than 0.51±0.05 in the model group (P<0.05), but was close to 1.00±0.11 in the control group (P>0.05). Conclusions In the insulin resistance model in vitro, AP can significantly increase the cell survival rate, reduce intracellular H2O2 concentration, and promote the expression of PPARγ. The mechanism may be related to lipid metabolism.
Key wordsastragalus polysaccharide    HepG2 cell    insulin resistance    oxidative stress
收稿日期: 2019-09-26      修回日期: 2019-11-15     
中图分类号:  R587.1  
基金资助:国家自然科学基金(81603351)
作者简介: 夏旭芬,E-mail:823676828@qq.com
引用本文:   
程玥, 毛竹君, 张芯, 夏旭芬. 黄芪多糖缓解HepG2细胞胰岛素抵抗模型的分子机制研究[J]. 预防医学, 2020, 32(2): 121-124.
CHENG Yue, MAO Zhujun, ZHANG Xin, XIA Xufen. Molecular mechanism of astragalus polysaccharide in alleviating insulin resistance in HepG2 cells. Preventive Medicine, 2020, 32(2): 121-124.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2020.02.004      或      http://www.zjyfyxzz.com/CN/Y2020/V32/I2/121
[1] GUARIGUATA L.Contribute data to the 6th edition of the IDF Diabetes Atlas[J]. Diabetes Res Clin Pract,2013,100(2):280-281.
[2] WU H B,ZHONG J M,HU R Y,et al.Rapidly rising incidence of type 1 diabetes in children and adolescents aged 0-19 years in Zhejiang,China,2007 to 2013[J]. Diabet Med,2016,33(10):1339-1346.
[3] 朱元斌,许向东,潘杰. 南浔区50岁及以上人群2型糖尿病患病率调查[J]. 预防医学,2018,30(11):1138-1141.
[4] XU Y,WANG L M,HE J,et al.Prevalence and control of diabetes in Chinese adults[J]. JAMA,2013,310(9):948-958.
[5] LI Y,DING L,HASSAN W,et al.Adipokines and hepatic insulin resistance[J]. J Diabetes Res,2013(2):170532.
[6] SALTIEL A R,KAHN C R.Insulin signaling and the regulation of glucose and lipid metabolism[J]. Nature,2011,414(6865):799-806.
[7] KENDALL D M,CUDDIHY R M,BERGENSTAL R M.Clinical application of incretin-based therapy:therapeutic potential,patient selection and clinical use[J]. Am J Med,2009,122(Suppl.6):37-50.
[8] BHUVANESWARI S,ANURADHA C V.Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice[J]. Can J Phsiol Pharmacol,2012,90(11):1544-1552.
[9] 吴发宝,陈希元.黄芪药理作用研究综述[J]. 中药材,2004, 27(3):232-234.
[10] HE X,SHU J,XU L,et al.Inhibitory effect of Astragalus polysaccharides on lipopolysaccharide-induced TNF-α and IL-1β production in THP-1 cells[J]. Molecules,2012,17(3):3155-3164.
[11] YEH T S,CHUANG H L,HUANG W C,et al.Astragalus membranaceus improves exercise performance and ameliorates exercise induced fatigue in trained mice[J]. Molecules,2014,19(3):2793-2807.
[12] 白崇智,仲启明,武玉鹏,等. 黄芪等5种中药对小鼠辐射损伤防护作用的实验研究[J]. 细胞与分子免疫学杂志,2013,29(10):1052-1054.
[13] HU F,LI X,ZHAO L,et al.Antidiabetic properties of purified polysaccharide from Hedysarum polybotrys[J]. Can J Physiol Pharmacol,2010,88(1):64-72.
[14] LIU M,WU K,MAO X,et al.Astragalus polysaccharide improves insulin sensitivity in KKAy mice:regulation of PKB/GLUT4 signaling in skeletal muscle[J]. J Ethnopharmacol,2010,127(1):32-37.
[15] BOUWENS L,ROOMAN I.Regulation of pancreatic bate-cell mass[J]. Physiol Rev,2005,85(4):1255-1270.
[16] EVANS J L,GOLDFINE I D,MADDUX B A,et al.Oxidative stress and stress-activated signaling pathways:a unifying hypothesis of type 2 diabetes[J]. Endocr Rev,2002,23(5):599-622.
[17] FAZAKERLEY D J,MINARD A Y,KRYCER J R,et al.Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation[J]. J Biol Chem,2018,293(19):7315-7328.
[18] SAKURABA H,MIZUKAMI H,YAGIHASHI N,et al.Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type Ⅱ diabetic patients[J]. Diabetologia,2002,45(1):85-96.
[19] BALAKUMAR P,MAHADEVAN N,SAMBATHKUMAR R.A contemporary overview of PPARα/γ dual agonists for the management of diabetic dyslipidemia[J]. Curr Mol Pharmacol,2019,12(3): 195-201.
[20] LAN D Y,SHEN X D,YUAN W W,et al.Sumoylation of PPARγ contributes to vascular endothelium insulin resistance through stabilizing the PPARγ-NcoR complex[J]. J Cell Physiol,2019,234(11):19663-19674.
[21] YAO F,YU Y,FENG L,et al. Adipogenic miR-27a in adipose tissue upregulates macrophage activation via inhibiting PPARγ of insulin resistance induced by high-fat diet-associated obesity[J].Exp Cell Res,2017,355(2):105-112.
[1] 赵乾秀, 白宇超, 白淼, 张灿, 张传福. 哺乳动物微塑料暴露的毒理机制研究进展[J]. 预防医学, 2023, 35(4): 303-306.
[2] 彭雪云, 吴南翔, 范宏亮, 白洁, 舒而怡, 陶核. 污水处理厂污泥及微塑料暴露对斑马鱼氧化应激水平的影响[J]. 预防医学, 2023, 35(3): 190-195.
[3] 朱玲慧, 鲁英, 张露艺. 孕期PAHs暴露与胎盘线粒体拷贝数的关联研究[J]. 预防医学, 2022, 34(3): 248-252.
[4] 张真, 洪颖, 盖雅婷, 林丽花, 翁鹭娜, 李玲玲. 双酚类化合物对BRL 3A肝细胞增殖、氧化应激和致突变作用研究[J]. 预防医学, 2022, 34(3): 302-306.
[5] 夏海玲, 蒋兆强, 冯玲芳, 余珉, 张敏, 陈钧强, 张幸, 楼建林. 石棉作业对人体氧化应激水平的影响[J]. 预防医学, 2022, 34(1): 1-5,10.
[6] 孙慧聪, 洪训宇, 韩冠亚, 孙胜珍, 祁世杰, 吴昊. 人脐带源间充质干细胞移植对肝纤维化大鼠氧化应激的影响[J]. 预防医学, 2021, 33(6): 642-646.
[7] 李珊珊, 赵钰岚. 胰岛素抵抗及高胰岛素血症促进胰腺癌发生的研究进展[J]. 预防医学, 2021, 33(11): 1122-1125,1129.
[8] 宋燕华, 蔡德雷, 鹿伟, 徐彩菊, 陈苘. 丹参水提物对小鼠免疫和氧化应激功能的影响[J]. 预防医学, 2019, 31(8): 862-864.
[9] 蔡德雷, 宋燕华, 徐彩菊, 鹿伟, 夏勇, 傅剑云, 沈海涛. 低剂量持久性有机污染物暴露对大鼠的影响[J]. 预防医学, 2019, 31(6): 558-563.
[10] 周程, 吴南翔, 范宏亮, 杨叶, 高明, 陈蝶, 沈宏. TCS和PCB153联合暴露对斑马鱼肝脏SOD和MDA的影响[J]. 预防医学, 2019, 31(4): 330-334.
[11] 马婧, 田慧艳, 韩瑞钰, 邓佩佩, 刘文娇, 王树松. 空腹血糖、胰岛素抵抗与精液质量的相关性研究[J]. 预防医学, 2019, 31(3): 274-276,279.
[12] 沈涌海, 施新颜, 邱媛, 王智毅, 陈忠宝. 多囊卵巢综合征患者血清FAI与AMH、IR的相关性研究[J]. 预防医学, 2018, 30(5): 467-470.
[13] 徐剑, 童晓玲, 岑江杰, 纪磊, 林师道, 朱心强. HepG2细胞中性红染色法测定化合物急性毒性的研究[J]. 预防医学, 2018, 30(5): 490-493.
[14] 余智, 于民, 顾苏兵, 邵晓莉, 洪小琴, 张腾. [Gly14]-Humanin对局灶性脑缺血再灌注损伤大鼠氧化应激及神经细胞凋亡的影响[J]. 预防医学, 2018, 30(1): 55-58,62.
[15] 施晓峰, 王三忠, 俞新芬, 沈华, 潘琴梅, 沈知行, 沈耿生, 陈公英. 血糖正常中老年人胰岛素抵抗指数分布及影响因素分析[J]. 预防医学, 2017, 29(5): 460-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed