Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (7): 692-696    DOI: 10.19485/j.cnki.issn2096-5087.2025.07.010
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
2型糖尿病患者周围神经病变风险预测模型研究
刘明坤1, 张丰香1, 韩彩静1, 王霞1, 陈世坤1, 金梅1,2, 孙金月1
1.山东第二医科大学公共卫生学院,山东 潍坊 261053;
2.山东第二医科大学附属医院,山东 潍坊 261000
A prediction model for diabetic peripheral neuropathy among patients with type 2 diabetes mellitus
LIU Mingkun1, ZHANG Fengxiang1, HAN Caijing1, WANG Xia1, CHEN Shikun1, JIN Mei1,2, SUN Jinyue1
1. School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, China;
2. Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, China
全文: PDF(905 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 建立2型糖尿病(T2DM)患者糖尿病周围神经病变(DPN)风险预测模型,为DPN防控提供依据。方法 选择2024年4—12月在山东第二医科大学附属医院内分泌与代谢科住院治疗的18~65岁T2DM患者为研究对象,通过电子病历收集年龄、T2DM病程、高血压史等人口学信息和25-羟维生素D、血清C肽、高密度脂蛋白胆固醇等血生化指标资料。采用多因素logistic回归模型筛选T2DM患者DPN风险预测因子并建立列线图;采用受试者操作特征(ROC)曲线、校准曲线和决策曲线评估模型的区分度、校准度和临床实用性。结果 纳入T2DM患者598例,其中男性359例,占60.03%;女性239例,占39.97%。年龄MQR)为54.50(15.00)岁。T2DM病程MQR)为6.00(9.00)年。DPN 262例,占43.81%。多因素logistic回归分析结果显示,高血压史(OR=3.260,95%CI:2.220~4.790)、饮酒史(OR=2.150,95%CI:1.390~3.310)、糖尿病并发症(OR=0.430,95%CI:0.270~0.680)、T2DM病程(OR=1.040,95%CI:1.010~1.070)、体质指数(OR=1.130,95%CI:1.070~1.200)、25-羟维生素D(OR=0.930,95%CI:0.910~0.960)和高密度脂蛋白胆固醇(OR=0.400,95%CI:0.230~0.720)是T2DM患者DPN的风险预测因子。建立的风险预测模型ROC曲线下面积为0.774(95%CI:0.737~0.812),灵敏度为0.710,特异度为0.723;校准曲线接近理想曲线;概率阈值为0.2~0.4时,模型有较好的临床应用价值。结论 本研究建立的风险预测模型有较好的区分度、校准度和临床实用性,对18~65岁T2DM患者DPN风险有较好的预测价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘明坤
张丰香
韩彩静
王霞
陈世坤
金梅
孙金月
关键词 2型糖尿病糖尿病周围神经病变列线图    
AbstractObjective To establish a risk prediction model for diabetic peripheral neuropathy (DPN) among patients with type 2 diabetes mellitus (T2DM), so as to provide a basis for DPN prevention and control. Methods T2DM inpatients aged 18-65 years admitted to the department of endocrinology and metabolism at Affiliated Hospital Shandong Second Medical University from April to December 2024 were selected as study subjects. Age, T2DM duration, hypertension history, 25-hydroxyvitamin D, serum C-peptide, and high density lipoprotein cholesterol (HDL-C) were collected through electronic medical records. Risk predictors of DPN among T2DM patients were screened using multivariable logistic regression model, and a nomogram was established. The receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis were employed to evaluate the discrimination, calibration and clinical utility of the nomogram, respectively. Results A total of 598 T2DM patients were enrolled, including 359 (60.03%) males and 239 (39.97%) females. The median age was 54.50 (interquartile range, 15.00) years, the median T2DM duration was 6.00 (interquartile range, 9.00) years. There were 262 cases of T2DM patients with DPN, accounting for 43.81%. Multivariable logistic regression identified hypertension history (OR=3.260, 95%CI: 2.220-4.790), alcohol use history (OR=2.150, 95%CI: 1.390-3.310), diabetes complications (OR=0.430, 95%CI: 0.270-0.680), T2DM duration (OR=1.040, 95%CI: 1.010-1.070), body mass index (OR=1.130, 95%CI: 1.070-1.200), 25-hydroxyvitamin D (OR=0.930, 95%CI: 0.910-0.960), and HDL-C (OR=0.400, 95%CI: 0.230-0.720) as risk predictors for DPN among T2DM patients. The area under the ROC curve of the established risk prediction model was 0.774 (95%CI: 0.737-0.812), with a sensitivity of 0.710 and a specificity of 0.723. The calibration curve after repeated sampling calibration approached the standard curve. Decision curve analysis showed that when the risk threshold probability was 0.2 to 0.4, the model demonstrates favorable clinical applicability. Conclusion The risk prediction model established in this study has favorable discrimination, calibration, and clinical utility, can effectively predict the risk of DPN among T2DM patients aged 18-65 years.
Key wordstype 2 diabetes mellitus    diabetic peripheral neuropathy    nomogram
收稿日期: 2025-03-04      修回日期: 2025-06-16      出版日期: 2025-07-10
中图分类号:  R587.1  
基金资助:山东省重点研发计划(重大科技创新工程)项目(2021SFGC0904); 山东省技术创新引导计划(中央引导地方科技发展资金)项目(YDZX2023095); 济南市新高校20条项目(202228059)
作者简介: 刘明坤,硕士研究生在读,公共卫生专业
通信作者: 孙金月,E-mail:moon_s731@hotmail.com   
引用本文:   
刘明坤, 张丰香, 韩彩静, 王霞, 陈世坤, 金梅, 孙金月. 2型糖尿病患者周围神经病变风险预测模型研究[J]. 预防医学, 2025, 37(7): 692-696.
LIU Mingkun, ZHANG Fengxiang, HAN Caijing, WANG Xia, CHEN Shikun, JIN Mei, SUN Jinyue. A prediction model for diabetic peripheral neuropathy among patients with type 2 diabetes mellitus. Preventive Medicine, 2025, 37(7): 692-696.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.07.010      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I7/692
[1] ZAINO B,GOEL R,DEVARAGUDI S,et al.Diabetic neuropathy:pathogenesis and evolving principles of management[J/OL].Dis Mon,2023,69(9)[2025-06-16].https://doi.org/10.1016/j.disamonth.2023.101582.
[2] GAO Y,CHEN S C,PENG M M,et al.Correlation between thioredoxin-interacting protein and nerve conduction velocity in patients with type 2 diabetes mellitus[J/OL].Front Neurol,2020,11[2025-06-16].https://doi.org/10.3389/fneur.2020.00733.
[3] LI Z L,GAO Y,JIA Y J,et al.Correlation between hemoglobin glycosylation index and nerve conduction velocity in patients with type 2 diabetes mellitus[J].Diabetes Metab Syndr Obes,2021,14:4757-4765.
[4] 李婉玲,冯晓芳,王玫.“360”体医融合在老年糖尿病周围神经病变病人全程管理中的应用[J].护理研究,2021,35(21):3913-3916.
LI W L,FENG X F,WANG M.Application of“360”body-medicine integration in the whole process management of senile diabetic peripheral neuropathy patients[J].Chin Nurs Res,2021,35(21):3913-3916.(in Chinese)
[5] 王英杰,孙高峰.2型糖尿病预测模型研究进展[J].预防医学,2025,37(4):369-372,377.
WANG Y J,SUN G F.Research progress on prediction models for type 2 diabetes mellitus[J].China Prev Med J,2025,37(4):369-372,377.(in Chinese)
[6] 苏银霞,卢耀勤,田翔华,等.基于常规体检指标的2型糖尿病风险预测研究进展[J].预防医学,2022,34(12):1230-1234.
SUN Y X,LU Y Q,TIAN X H,et al.Research progress on risk prediction of type 2 diabetes mellitus based on routine physical examination indicators[J].China Prev Med J,2022,34(12):1230-1234.(in Chinese)
[7] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)[J].中华糖尿病杂志,2021,13(4):315-409.
Chinese Diabetes Society.Guideline for the prevention and treatment of type 2 diabetes mellitus in China(2020 edition)[J].Chin J Diabetes Mellitus,2021,13(4):315-409.(in Chinese)
[8] LIU X X,CHEN D,FU H M,et al.Development and validation of a risk prediction model for early diabetic peripheral neuropathy based on a systematic review and meta-analysis[J/OL].Front Public Health,2023,11[2025-06-16].https://doi.org/10.3389/fpubh.2023.1128069.
[9] WANG W M,JI Q H,RAN X W,et al.Prevalence and risk factors of diabetic peripheral neuropathy:a population-based cross-sectional study in China[J/OL].Diabetes Metab Res Rev,2023,39(8)[2025-06-16].https://doi.org/10.1002/dmrr.3702.
[10] KARTHIKSARAVANAN K,MERITON A S.A study on prevalence of diabetic peripheral neuropathy in diabetic patients attending a rural health and training centre[J].J Family Med Prim Care,2024,13(2):726-729.
[11] KHAWAJA N,ABU-SHENNAR J,SALEH M,et al.The prevalenceKHAWAJA N,ABU-SHENNAR J,SALEH M,The prevalence and risk factors of peripheral neuropathy among patients with type 2 diabetes mellitus;the case of Jordan[J/OL].Diabetol Metab Syndr,2018,10[2025-06-16].https://doi.org/10.1186/s13098-018-0309-6.
[12] LAWAL Y,MSHELIA-RENG R,OMONUA S O,et al.Comparison of waist-height ratio and other obesity indices in the prediction of diabetic peripheral neuropathy[J/OL].Front Nutr,2022,9[2025-06-16].https://doi.org/10.3389/fnut.2022.949315.
[13] WANG W M,JI Q H,RAN X W,et al.Prevalence and risk factors of diabetic peripheral neuropathy:a population-based cross-sectional study in China[J/OL].Diabetes Metab Res Rev,2023,39(8)[2025-06-16].https://doi.org/10.1002/dmrr.3702.
[14] HE R,HU Y Y,ZENG H,et al.Vitamin D deficiency increases the risk of peripheral neuropathy in Chinese patients with type 2 diabetes[J/OL].Diabetes Metab Res Rev,2017,33(2)[2025-06-16].https://doi.org/10.1002/dmrr.2820.
[15] 欧阳碧露,王国强,王萌萌,等.2型糖尿病周围神经病变临床预测模型的构建[J].基础医学与临床,2024,44(12):1685-1690.
OUYANG B L,WANG G Q,WANG M M,et al.Development of a clinical prediction model for diabetic peripheral neuropathy with type 2 diabetes mellitus[J].Basic Clin Med,2024,44(12):1685-1690.(in Chinese)
[1] 楚楚, 徐红, 蔡波, 韩颖颖, 穆海祥, 郑会燕, 林玲. 中老年人群脑卒中风险预测模型研究[J]. 预防医学, 2025, 37(7): 649-653.
[2] 龚亮亮, 戎志东. 10~13岁儿童非自杀性自伤行为风险预测模型研究[J]. 预防医学, 2025, 37(6): 546-550.
[3] 俞丹丹, 杨加丽, 张雅萍, 许慧琳, 何丹丹, 李俊. 2型糖尿病共病患者空腹血糖波动轨迹的影响因素研究[J]. 预防医学, 2025, 37(6): 562-567,572.
[4] 李美琳, 周梦姣, 吴佳芸, 喻喆, 孔利萍. 老年男性2型糖尿病患者合并肌少症的影响因素分析[J]. 预防医学, 2025, 37(6): 588-592.
[5] 陆丽君, 袁磊, 李殿江, 卢昆, 朱怡萱, 王志勇, 刘思浚. 老年2型糖尿病患者自我效能、自我管理行为在抑郁症状与血糖控制间的中介效应分析[J]. 预防医学, 2025, 37(5): 455-459.
[6] 王英杰 综述, 孙高峰, 审校. 2型糖尿病预测模型研究进展[J]. 预防医学, 2025, 37(4): 369-372,377.
[7] 孙霞, 但玲英, 郑鹏, 陈薪伊. 2型糖尿病患者脂肪因子与糖尿病视网膜病变的关联研究[J]. 预防医学, 2025, 37(3): 248-252.
[8] 陈海苗, 马岩, 刘明奇, 马珊珊, 李军, 方益荣. 儿童期肥胖与2型糖尿病、冠心病的孟德尔随机化研究[J]. 预防医学, 2025, 37(3): 307-311.
[9] 沈丽丽, 潘亚慧, 冯佳峰. 化纤企业倒班工人睡眠障碍预测模型研究[J]. 预防医学, 2025, 37(1): 51-54.
[10] 王英杰, 孙高峰, 赵娥, 田原. 2017—2021年乌鲁木齐市2型糖尿病患者管理指标分析[J]. 预防医学, 2025, 37(1): 92-95.
[11] 崔彦泽, 张玲, 蒋璐, 李慧敏, 王硕. 衰弱与2型糖尿病的孟德尔随机化研究[J]. 预防医学, 2024, 36(9): 786-789.
[12] 郑帅印, 李丽丹, 陈佩弟, 谢尔瓦妮古丽·阿卜力米提, 李砥. 2型糖尿病合并非酒精性脂肪肝的预测模型研究[J]. 预防医学, 2024, 36(9): 741-745,749.
[13] 李欢, 张敬红, 余丹, 金文舒, 倪少梅, 吴天凤. 老年2型糖尿病患者血清维生素D与甲状腺功能指标的关联分析[J]. 预防医学, 2024, 36(8): 702-705.
[14] 王慧, 高霞, 朱晓云, 马芳军. 社区2型糖尿病患者血糖控制达标的影响因素分析[J]. 预防医学, 2024, 36(5): 423-427.
[15] 陆艳, 李琼珊, 孟迪云, 梅丽娜, 丁忠英, 李雯雯, 储华, 秦玲. 双胎妊娠孕妇子痫前期风险预测模型研究[J]. 预防医学, 2024, 36(4): 283-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed