Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (7): 649-653    DOI: 10.19485/j.cnki.issn2096-5087.2025.07.001
  论著 本期目录 | 过刊浏览 | 高级检索 |
中老年人群脑卒中风险预测模型研究
楚楚1, 徐红2, 蔡波1, 韩颖颖1, 穆海祥3, 郑会燕3, 林玲1
1.南通市疾病预防控制中心,江苏 南通 226001;
2.江苏省疾病预防控制中心,江苏 南京 210000;
3.南通市崇川区疾病预防控制中心,江苏 南通 226001
A prediction model for stroke risk among middle-aged and elderly populations
CHU Chu1, XU Hong2, CAI Bo1, HAN Yingying1, MU Haixiang3, ZHENG Huiyan3, LIN Ling1
1. Nantong Center for Disease Control and Prevention, Nantong, Jiangsu 226001, China;
2. Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210000, China;
3. Chongchuan District Center for Disease Control and Prevention, Nantong, Jiangsu 226001, China
全文: PDF(869 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 构建中老年人群脑卒中风险预测模型,为早期识别脑卒中高危人群提供依据。方法 于2023年10—12月,采用多阶段分层随机抽样方法抽取江苏省南通市崇川区≥45岁常住居民为研究对象,通过问卷调查收集人口学信息、生活行为和慢性病等资料;采用2020年第七次全国人口普查数据计算脑卒中标化患病率。按8∶2比例将研究对象随机分为训练集和内部验证集。于2023年7—8月收集如皋市≥45岁常住居民的人口学信息、生活行为和慢性病等资料作为外部验证集。采用多因素logistic回归模型筛选中老年人群脑卒中风险预测因子并建立列线图;采用受试者操作特征(ROC)曲线下面积(AUC)、校准曲线和Hosmer-Lemeshow拟合优度检验评价预测效果。结果 纳入≥45岁居民6 290名,其中男性2 975人,占47.30%;女性3 315人,占52.70%。年龄为(61.90±10.20)岁。脑卒中患病率为3.80%,标化患病率为3.36%。多因素logistic回归分析结果显示,年龄、吸烟、高血压和高血脂是中老年人群脑卒中风险预测因子,构建风险预测模型为ln[p/(1-p)]=-4.619+0.046×年龄+0.383×吸烟+0.887×高血压+0.678×高血脂。训练集、内部验证集和外部验证集AUC值分别为0.748、0.755和0.738;一致性指数分别为0.748、0.755和0.738;Hosmer-Lemeshow拟合优度检验结果显示模型拟合度较好(P>0.05)。结论 本研究以年龄、吸烟、高血压和高血脂构建的预测模型区分度和校准度均较好,可尝试用于≥45岁中老年人脑卒中风险预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
楚楚
徐红
蔡波
韩颖颖
穆海祥
郑会燕
林玲
关键词 中老年人脑卒中列线图    
AbstractObjective To create a prediction model for stroke risk among middle-aged and elderly populations, so as to provide a basis for early identification of high-risk population for stroke. Methods From October to December 2023, residents aged ≥45 years in Chongchuan District, Nantong City, Jiangsu Province were selected using a multi-stage stratified random sampling method. The demographic information, life behavior, and chronic disease data were collected through a questionnaire survey. The standardized prevalence of stroke was calculated using data from the seventh National Population Census. The subjects were randomly divided into the training set and the internal validation set according to the ratio of 8∶2. The basic demographic information, life behavior, and chronic diseases of residents aged ≥45 years in Rugao City were collected from July to August 2023 as the external validation set. Predictive factors were selected using multivariable logistic regression model, and a nomogram for stroke among residents aged ≥45 years was established. The prediction effect was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC), calibration curve, and Hosmer-Lemeshow goodness of fit test. Results A total of 6 290 residents aged ≥45 years were included, including 2 975 males (47.30%) and 3 315 females (52.70%). The average age was (61.90±10.20) years. The prevalence of stroke was 3.80%, and the standardized prevalence was 3.36%. The multivariable logistic regression showed that age, smoking, hypertension, and hyperlipidemia were predictors of stroke risk among residents aged ≥45 years, and the prediction model was ln[p/(1-p)]=-4.619+0.046×age+0.383×smoking+0.887×hypertension+0.678×hyperlipidemia. The AUC values of the training set, internal validation set, and external validation set were 0.748, 0.755, and 0.738, respectively. The consistency indexes were 0.748, 0.755, and 0.738, respectively. The Hosmer-Lemeshow goodness of fit test showed a good fitting effect (P>0.05). Conclusion The prediction model based on age, smoking, hypertension, and hyperlipidemia has good discrimination and calibration, and can be used to predict the risk of stroke among middle-aged and elderly populations aged ≥45 years.
Key wordsmiddle-aged and elderly populations    stroke    nomogram
收稿日期: 2025-02-20      修回日期: 2025-05-30      出版日期: 2025-07-10
中图分类号:  R743.3  
基金资助:南通市卫生健康委员会科研课题计划资助(QN2023046,MS2023091)
作者简介: 楚楚,硕士,医师,主要从事慢性病防制工作
通信作者: 林玲,E-mail:22313112@qq.com   
引用本文:   
楚楚, 徐红, 蔡波, 韩颖颖, 穆海祥, 郑会燕, 林玲. 中老年人群脑卒中风险预测模型研究[J]. 预防医学, 2025, 37(7): 649-653.
CHU Chu, XU Hong, CAI Bo, HAN Yingying, MU Haixiang, ZHENG Huiyan, LIN Ling. A prediction model for stroke risk among middle-aged and elderly populations. Preventive Medicine, 2025, 37(7): 649-653.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.07.001      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I7/649
[1] 李季,王梅,张丽丽,等.2015—2022年济宁市脑卒中发病趋势[J].预防医学,2024,36(11):984-987.
LI J,WANG M,ZHANG L L,et al.Trend in incidence of stroke in Jining City from 2015 to 2022[J].China Prev Med J,2024,36(11):984-987.(in Chinese)
[2] 《中国脑卒中防治报告2021》编写组.《中国脑卒中防治报告2021》概要[J].中国脑血管病杂志,2023,20(11):783-793.
Report on Stroke Prevention Treatment in China Writing Group.Brief report on Stroke Prevention and Treatment in China,2021[J].Chin J Cerebrovasc Dis,2023,20(11):783-793.(in Chinese)
[3] ZHOU M G,WANG H D,ZENG X Y,et al.Mortality,morbidity,and risk factors in China and its provinces,1990-2017:a systematic analysis for the global burden of disease study 2017[J].Lancet,2019,394(10204):1145-1158.
[4] 耿侯跃,崔岚,覃玉,等.2017—2020年江苏省40岁及以上常住居民脑卒中检出情况及危险因素分析[J].现代预防医学,2023,50(21):3860-3865.
GENG H Y,CUI L,QIN Y,et al.Analysis of stroke detection and risk factors among permanent residents aged 40 and above in Jiangsu Province from 2017 to 2020[J].Mod Prev Med,2023,50(21):3860-3865.(in Chinese)
[5] 聂祖娇,郑聪毅,王馨,等.健康社会决定因素水平与脑卒中发病风险的关系——一项基于全国前瞻性队列的研究[J].中国循环杂志,2024,39(6):599-605.
NIE Z J,ZHENG C Y,WANG X,et al.Relationship between social determinants of health and stroke:a national prospective cohort study[J].Chin Circ J,2024,39(6):599-605.(in Chinese)
[6] 于宁,张梅,张笑,等.中国中老年居民高血压、糖尿病和血脂异常共病现状及影响因素研究[J].中华流行病学杂志,2023,44(2):196-204.
YU N,ZHANG M,ZHANG X,et al.Study on the status and influencing factors of comorbidity of hypertension,diabetes,and dyslipidemia among middle-aged and elderly Chinese adults[J].Chin J Epidemiol,2023,44(2):196-204.(in Chinese)
[7] HIRSHKOWITZ M,WHITON K,ALBERT S M,et al.National sleep foundation's updated sleep duration recommendations:final report[J].Sleep Health,2015,1(4):233-243.
[8] 任露露,顾嘉昌,闵艺璇,等.2016—2023年宜兴市脑卒中发病趋势分析[J].预防医学,2025,37(5):498-502.
REN L L,GU J C,MIN Y X,et al.Trend in incidence of stroke in Yixing City from 2016 to 2023[J].China Prev Med J,2025,37(5):498-502.(in Chinese)
[9] 徐金燕,夏聪聪,杨红美.老年脑卒中肺部感染风险预测模型的建立及验证[J].实用老年医学,2024,38(5):452-455,460.
XU J Y,XIA C C,YANG H M,et al.Establishment and validation of a Nomogram to predict the risk of pulmonary infection in elderly patients with stroke[J].Pract Geriatr,2024,38(5):452-455,460.(in Chinese)
[10] 曹婉婷,胡秀兰,韩荣荣.2014—2023年临平区脑卒中疾病负担趋势[J].预防医学,2024,36(11):988-991,995.
CAO W T,HU X L,HAN R R.Trend in disease burden of stroke in Linping District from 2014 to 2023[J].China Prev Med J,2024,36(11):988-991,995.(in Chinese)
[11] 李瑾,侯候,王亚新,等.中国中老年人群脑卒中发病的影响因素探索及列线图模型构建[J].中国动脉硬化杂志,2024,32(10):865-871.
LI J,HOU H,WANG Y X,et al.Exploring the influencing factors of stroke and construcing a nomogram prediction model in Chinese middle-aged and older population[J].Chin J Anterioscler,2024,32(10):865-871.(in Chinese)
[12] SETYOPRANOTO I,BAYUANGGA H F,PANGGABEAN A S,et al.Prevalence of stroke and associated risk factors in Sleman District of Yogyakarta Special Region,Indonesia[J/OL].Stroke Res Treat,2019[2025-05-30].https://doi.org/10.1155/2019/2642458.
[13] FAN F F,YUAN Z W,QIN X H,et al.Optimal systolic blood pressure levels for primary prevention of stroke in general hypertensive adults:findings from the CSPPT(China Stroke Primary Prevention Trial)[J].Hypertension,2017,69(4):697-704.
[14] XU J,ZHANG X,JIN A,et al.Trends and risk factors associated with stroke recurrence in China,2007-2018[J/OL].JAMA Network Open,2022,5(6)[2025-05-30].https://doi.org/10.1001/jamanetworkopen.2022.16341.
[15] KUMRAL E, EVYAPAN D, GÖKÇAY F, et al. Association of baseline dyslipidemia with stroke recurrence within five-years after ischemic stroke[J]. Int J Stroke,2014,9(Suppl.A100):119-126.
[16] RUAN H,RAN X,LI S S,et al.Dyslipidemia versus obesity as predictors of ischemic stroke prognosis:a multi-center study in China[J/OL].Lipids Health Dis,2024,23(1)[2025-05-30].https://doi.org/10.1186/s12944-024-02061-9.
[17] WANG C,DU Z,YE N,et al.Hyperlipidemia and hypertension have synergistic interaction on ischemic stroke:insights from a general population survey in China[J/OL].BMC Cardiovasc Disord,2022,22(1)[2025-05-30].https://doi.org/10.1186/s12872-022-02491-2.
[1] 刘明坤, 张丰香, 韩彩静, 王霞, 陈世坤, 金梅, 孙金月. 2型糖尿病患者周围神经病变风险预测模型研究[J]. 预防医学, 2025, 37(7): 692-696.
[2] 龚亮亮, 戎志东. 10~13岁儿童非自杀性自伤行为风险预测模型研究[J]. 预防医学, 2025, 37(6): 546-550.
[3] 任露露, 顾嘉昌, 闵艺璇, 张思晨, 乔健健, 肖月, 胡静. 2016—2023年宜兴市脑卒中发病趋势分析[J]. 预防医学, 2025, 37(5): 498-502.
[4] 彭星, 李逸晗, 陈振霆, 阿卜杜乃比·吾普尔, 井召航, 帕尔哈提·那斯尔, 杨蕾. 基于组轨迹模型的中老年人群衰弱与认知功能关联研究[J]. 预防医学, 2025, 37(5): 449-454.
[5] 张丛笑, 沈利明, 吴丽萍, 黄闽燕, 朱冰, 王尊晖. 西湖区中老年人群轻度认知障碍的影响因素研究[J]. 预防医学, 2025, 37(4): 331-335.
[6] 王尊晖, 张丛笑, 沈利明, 陈晖, 牛星凯. 西湖区中老年人群抑郁症状调查[J]. 预防医学, 2025, 37(3): 296-299.
[7] 沈丽丽, 潘亚慧, 冯佳峰. 化纤企业倒班工人睡眠障碍预测模型研究[J]. 预防医学, 2025, 37(1): 51-54.
[8] 郑帅印, 李丽丹, 陈佩弟, 谢尔瓦妮古丽·阿卜力米提, 李砥. 2型糖尿病合并非酒精性脂肪肝的预测模型研究[J]. 预防医学, 2024, 36(9): 741-745,749.
[9] 邢玉萍, 邢辉, 李淼, 高燕. 中老年人群抑郁症状与衰弱的关系研究[J]. 预防医学, 2024, 36(8): 649-653.
[10] 谭靖宇, 拓嘉怡, 杨丹妮, 方婕, 李泓澜, 项永兵. 中老年人群膳食炎症指数与胆石症的关联研究[J]. 预防医学, 2024, 36(7): 611-615.
[11] 陆艳, 李琼珊, 孟迪云, 梅丽娜, 丁忠英, 李雯雯, 储华, 秦玲. 双胎妊娠孕妇子痫前期风险预测模型研究[J]. 预防医学, 2024, 36(4): 283-287.
[12] 邹泉, 赵信星, 陈洪恩, 吴兰兰, 梁晓峰, 吴静, 王长义. 南山区脑卒中患者住院费用的影响因素分析[J]. 预防医学, 2024, 36(4): 328-332,337.
[13] 周梓萌, 洪忻. 心血管病高危人群预测模型研究[J]. 预防医学, 2024, 36(3): 211-214.
[14] 肖琼, 刘丽梅, 伍晨婵, 徐璐. 中老年人群黄斑变性的影响因素研究[J]. 预防医学, 2024, 36(3): 228-231.
[15] 张栗, 周睿, 王蓓佳, 王红妹. 中老年抑郁症状人群平衡能力的影响因素研究[J]. 预防医学, 2024, 36(2): 115-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed