Analysis of PM2.5 pollution in Urumqi City from 2016 to 2023 and construction of a prediction model
CHEN Peidi1, XIAO Tingting1, LI Xinxiu1, ZHENG Shuaiyin1, HUANG Yun2
1. School of Public Health, Xinjiang Second Medical College, Karamay, Xinjiang 834000, China; 2. Karamay Center for Disease Control and Prevention, Karamay, Xinjiang 834000, China
Abstract:Objective To analyze the characteristics of fine particulate matter (PM2.5) pollution in Urumqi City, Xinjiang Uygur Autonomous Region from 2016 to 2023 and establish a prediction model, so as to provide the reference for air pollution prevention and control. Methods PM2.5 monitoring data of Urumqi City from 2016 to 2023 were collected through the website of Ministry of Ecology and Environment of China. The changing trend of PM2.5 concentration was analyzed using temporal chart and seasonal index. PM2.5 monthly average concentrations from 2016 to 2023 were used to establish an autoregressive integrated moving average (ARIMA) model, and the data in 2023 was fitted and compared with the actual values, using mean absolute percentage error (MAPE) to evaluate the effectiveness of the model, and PM2.5 monthly average concentration from 2024 to 2025 was predicted. Results PM2.5 daily average concentration in Urumqi City showed a decreasing trend from 2016 to 2023 (rs=-0.239, P<0.001), with high seasonal indexes in January, February and December, indicating certain seasonal characteristics. The optional model was ARIMA (1, 0, 0) (1, 1, 0)12, with the value of Akaike information criterion, corrected Akaike information criterion, and Bayesian information criterion being 727.38, 727.88 and 737.10, respectively. PM2.5 monthly average concentration in 2023 was fitted and compared with the actual values, with an absolute error range of 0.31-7.45 μg/m3, a relative error range of 0.01-0.53, and MAPE of 14.42%. PM2.5 monthly average concentration in Urumqi City from 2024 to 2025 was predicted to be consistent with the trend from 2016 to 2023. Conclusions PM2.5 concentration in Urumqi City showed a tendency towards a decline from 2016 to 2023, and was relatively high in winter. ARIMA (1, 0, 0) (1, 1, 0)12 can be used for short-term prediction of PM2.5 pollution in Urumqi City.
陈佩弟, 肖婷婷, 李新秀, 郑帅印, 黄芸. 2016—2023年乌鲁木齐市大气PM2.5污染分析及建立预测模型[J]. 预防医学, 2024, 36(6): 510-513.
CHEN Peidi, XIAO Tingting, LI Xinxiu, ZHENG Shuaiyin, HUANG Yun. Analysis of PM2.5 pollution in Urumqi City from 2016 to 2023 and construction of a prediction model. Preventive Medicine, 2024, 36(6): 510-513.
[1] PEI C L,WU Y F,TAO J,et al.Seasonal variations of mass absorption efficiency of elemental carbon in PM2.5 in urban Guangzhou of South China[J].J Environ Sci(China),2023,133(11):83-92. [2] 林少凯,王恺,詹小海,等.福州市工业区和商业居住区大气PM2.5中多环芳烃特征的变化及其健康风险[J].环境与职业医学,2022,39(11):1277-1283. [3] DONG F,ZHANG S N,LI Y F,et al.Examining environment regulation efficiency of haze control and driving mechanism:evidence from China[J].Environ Sci Pollut Res Int,2020,27(23):29171-29190. [4] 徐琪,叶辉,朱冰,等.大气PM2.5与呼吸系统、心脑血管疾病急救病例数的相关性研究[J].预防医学,2022,34(7):710-714. [5] 李朝康,龚科米,吕烨,等.杭州市大气污染对居民死亡的影响研究[J].预防医学,2023,35(1):11-16. [6] 王梦琦,黄翌,卢显晶,等.2014—2019年中国PM2.5浓度及与老年心脑血管疾病归因死亡的时空分析[J].中国老年学杂志,2023,43(6):1490-1494. [7] ZHANG X,ZHANG H,WANG Y,et al.Personal PM2.5-bound PAH exposure and lung function in healthy office workers:a pilot study in Beijing and Baoding,China[J].J Environ Sci(China),2023,133(11):48-59. [8] 陈镘,黄柏石,刘晔.PM2.5污染对中国人口死亡率的影响——基于346个城市面板数据的实证分析[J].地理科学进展,2022,41(6):1028-1040. [9] 李婷,张莹,李二帅,等.乌鲁木齐市2021年采暖期与非采暖期大气中PM2.5污染特征及来源分析[J].中国热带医学,2023,23(6):631-636. [10] 孙秀秀,刘光涛,刘艳,等.ARIMA乘积季节模型预测湖州市手足口病流行趋势[J].预防医学,2021,33(8):801-803,807. [11] 环境保护部,国家质量监督检验检疫总局.环境空气质量标准:GB 5749—2006[S].北京:中国环境科学出版社,2012. [12] 祝婕,都伟新,马俊英,等.基于MM5/CALPUFF的乌鲁木齐市“煤改气”工程大气污染物浓度空间变化数值模拟[J].干旱区地理,2017,40(1):165-171. [13] 盛永财,玉米提·哈力克,阿不都拉·阿不力孜.气象因素对乌鲁木齐市PM2.5浓度影响分析[J].环境工程,2018,36(11):64-69. [14] 余会明,曹琛,夏平,等.新疆乌鲁木齐市地质灾害特征分析及防治措施建议[J].地质灾害与环境保护,2017,28(1):20-24. [15] 薛一波,张小啸,雷加强,等.新疆大气颗粒物污染时空演变及沙尘组分研究[J].中国环境科学,2024,45(3):1-10.