Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (2): 148-153    DOI: 10.19485/j.cnki.issn2096-5087.2025.02.009
  综述 本期目录 | 过刊浏览 | 高级检索 |
机器学习方法构建健康素养预测模型的范围综述
潘祥, 童莺歌, 李怡萱, 倪珂, 程雯倩, 辛蒙雨, 胡钰滢
杭州师范大学护理学院,浙江 杭州 311121
Health literacy prediction models based on machine learning methods: a scoping review
PAN Xiang, TONG Yingge, LI Yixuan, NI Ke, CHENG Wenqian, XIN Mengyu, HU Yuying
School of Nursing, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
全文: PDF(843 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 对应用机器学习方法构建的健康素养预测模型的种类、构建方法和预测效果进行范围综述,为该类模型的改进和应用提供参考。方法 检索中国知网、万方数据知识服务平台、维普中文科技期刊数据库、PubMed和Web of Science,收集建库至2024年5月1日发表的应用机器学习方法构建健康素养预测模型研究文献。采用预测模型偏倚风险评估工具进行文献质量评价,对纳入文献的基本特征、模型构建方法、数据来源、缺失值处理、预测因子和预测效果等进行综述。结果 检索获得文献524篇,最终纳入22篇,发表时间为2007—2024年。涉及48个健康素养预测模型,其中25个偏倚风险为高风险,占52.08%,主要问题集中在缺失值处理、预测因子选择和模型评价方法。模型构建方法包括回归模型、基于树的机器学习方法、支持向量机和神经网络模型。预测因子主要包括个人、人际关系、组织和社会/政策4个层面的因素,年龄、文化程度、经济水平、健康状况和互联网使用的出现频率较高。14篇文献进行了模型内部验证,4篇进行了外部验证。42个模型报告了受试者操作特征曲线下面积,范围为0.52~0.983,区分度良好。结论 应用机器学习方法构建的健康素养预测模型展现了较好的预测能力,但研究在偏倚风险、数据处理和验证规范性等方面存在不足。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘祥
童莺歌
李怡萱
倪珂
程雯倩
辛蒙雨
胡钰滢
关键词 健康素养预测模型机器学习范围综述    
AbstractObjective To conduct a scoping review on the types, construction methods and predictive performance of health literacy prediction models based on machine learning methods, so as to provide the reference for the improvement and application of such models. Methods Publications on health literacy prediction models conducted using machine learning methods were retrieved from CNKI, Wanfang Data, VIP, PubMed and Web of Science from inception to May 1, 2024. The quality of literature was assessed using the Prediction Model Risk of Bias ASsessment Tool. Basic characteristics, modeling methods, data sources, missing value handling, predictors and predictive performance were reviewed. Results A total of 524 publications were retrieved, and 22 publications between 2007 and 2024 were finally enrolled. Totally 48 health literacy prediction models were involved, and 25 had a high risk of bias (52.08%), with major issues focusing on missing value handling, predictor selection and model evaluation methods. Modeling methods included regression models, tree-based machine learning methods, support vector machines and neural network models. Predictors primarily encompassed factors at four aspects: individual, interpersonal, organizational and society/policy aspects, with age, educational level, economic status, health status and internet use appearing frequently. Internal validation was conducted in 14 publications, and external validation was conducted in 4 publications. Forty-two models reported the areas under the receiver operating characteristic curve, which ranged from 0.52 to 0.983, indicating good discrimination. Conclusion Health literacy prediction models based on machine learning methods perform well, but have deficiencies in risk of bias, data processing and validation.
Key wordshealth literacy    prediction model    machine learning    scope review
收稿日期: 2024-06-27      修回日期: 2024-11-01      出版日期: 2025-02-10
中图分类号:  R193  
基金资助:教育部规划基金项目(23YJAZH136)
作者简介: 潘祥,硕士研究生在读,护理学专业
通信作者: 童莺歌,E-mail:1352597965@qq.com   
引用本文:   
潘祥, 童莺歌, 李怡萱, 倪珂, 程雯倩, 辛蒙雨, 胡钰滢. 机器学习方法构建健康素养预测模型的范围综述[J]. 预防医学, 2025, 37(2): 148-153.
PAN Xiang, TONG Yingge, LI Yixuan, NI Ke, CHENG Wenqian, XIN Mengyu, HU Yuying. Health literacy prediction models based on machine learning methods: a scoping review. Preventive Medicine, 2025, 37(2): 148-153.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.02.009      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I2/148
[1] 中华人民共和国国家卫生健康委员会.2023年全国居民健康素养水平提高到29.70%[EB/OL].[2024-11-01].http://www.nhc.gov.cn/xcs/s3582/202404/287e15ca9fd148b5ab9debce59f58c6d.shtml.
[2] 闫晓彤,徐越,姚丁铭,等.2016—2021年浙江省农村居民健康素养分析[J].预防医学,2022,34(10):1053-1058.
YAN X T,XU Y,YAO D M,et al.Health literacy among rural residents in Zhejiang Province from 2016 to 2021[J].China Prev Med J,2022,34(10):1053-1058.(in Chinese)
[3] LUO W,NGUYEN T,NICHOLS M,et al.Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset[J/OL].PLoS One,2015,10(5)[2024-11-01].https://doi.org/10.1371/journal.pone.0125602.
[4] FLAXMAN A D,VOS T.Machine learning in population health:Opportunities and threats[J/OL].PLoS Med,2018,15(11)[2024-11-01].https://doi.org/10.1371/journal.pmed.1002702.
[5] TRICCO A C,LILLIE E,ZARIN W,et al.PRISMA extension for scoping reviews(PRISMA-ScR):checklist and explanation[J].Ann Intern Med,2018,169(7):467-473.
[6] 陈茹,王胜锋,周家琛,等.预测模型研究的偏倚风险和适用性评估工具解读[J].中华流行病学杂志,2020,41(5):776-781.
CHEN R,WANG S F,ZHOU J C,et al.Introduction of the Prediction model Risk Of Bias ASsessment Tool:a tool to assess risk of bias and applicability of prediction model studies[J].Chin J Epidemiol,2020,41(5):776-781.(in Chinese)
[7] ZHOU R S,YIN W H,LI W J,et al.Prediction model for infectious disease health literacy based on synthetic minority oversampling technique algorithm[J/OL].Comput Math Methods Med,2022[2024-11-01].https://doi.org/10.1155/2022/8498159.
[8] İNCEOĞLU F,DENIZ S,YAGIN F H.Prediction of effective sociodemographic variables in modeling health literacy:a machine learning approach[J/OL].Int J Med Inform,2023[2024-11-01].https://doi.org/10.1016/j.ijmedinf.2023.105167.
[9] XIE T,ZHANG N,MAO Y,et al.How to predict the electronic health literacy of Chinese primary and secondary school students?:establishment of a model and web nomograms[J/OL].BMC Public Health,2022,22[2024-11-01].https://doi.org/10.1186/s12889-022-13421-4.
[10] HONG Y,ZHANG X D,CHEN J X.XGBoost-based prediction modelling and analysis for health literacy assessment[J].Int J Model Identif Control,2021,39(3):229-235.
[11] 季娜,贾宝琪,崔莲花.基于logistic回归及决策树模型的大学生健康素养影响因素分析[J].预防医学论坛,2023,29(12):881-886.
JI N,JIA B Q,CUI L H.Analysis on influencing factors of college students' health literacy based on logistic regression and decision tree model[J].Prev Med Trib,2023,29(12):881-886.(in Chinese)
[12] 李现文,李春玉,KIM M Y,等.决策树与Logistic回归在高血压患者健康素养预测中的应用[J].护士进修杂志,2012,27(13):1157-1159.
LI X W,LI C Y,KIM M Y,et al.Application of decision tree and logistic regression on the health literacy prediction of hypertension patients[J].J Nurses Train,2012,27(13):1157-1159.(in Chinese)
[13] 林丰,林彩红,叶少英,等.基于逐步Logistic回归和神经网络模型的健康素养预测及对比研究[J].中国健康教育,2018,34(8):699-702.
LIN F,LIN C H,YE S Y,et al.Comparison on health literacy prediction between stepwise logistic regression and neural network model[J].Chin J Health Educ,2018,34(8):699-702.(in Chinese)
[14] 王可,赵华硕,张虹,等.基于SMOTE算法与机器学习的老年人健康素养预测研究[J].中国校医,2019,33(9):641-643.
WANG K,ZHAO H S,ZHANG H,et al.Prediction of health literacy of the elderly based on SMOTE algorithm and machine learning[J].Chin J School Doctor,2019,33(9):641-643.(in Chinese)
[15] HOU W H,KUO K N,CHEN M J,et al.Simple scoring algorithm to identify community-dwelling older adults with limited health literacy:a cross-sectional study in Taiwan[J/OL].BMJ Open,2021,11[2024-11-01].https://doi.org/10.1136/bmjopen-2020-045411.
[16] ZHANG Q H,YIN J Y,WANG Y J,et al.A nomogram for predicting the infectious disease-specific health literacy of older adults in China.[J].Asian Nurs Res,2024,18(2):106-113.
[17] VAN DER HEIDE I,UITERS E,SØRENSEN K,et al.Health literacy in Europe:the development and validation of health literacy prediction models[J].Eur J Public Health,2016,26(6):906-911.
[18] LUBIMIR K T.Developing a predictive model for measuring health literacy in Hawaii's adult populations[D].Hawaii:University of Hawaii,2017.
[19] MARTIN L T,RUDER T,ESCARCE J J,et al.Developing predictive models of health literacy[J].J Gen Intern Med,2009,24(11):1211-1216.
[20] MILLER M J,DEGENHOLTZ H B,GAZMARMARIAN J A,et al.Identifying elderly at greatest risk of inadequate health literacy:a predictive model for population-health decision makers[J].Res Social Adm Pharm,2007,3(1):70-85.
[21] LAURSEN K R,SEED P T,PROTHEROE J,et al.Developing a method to derive indicative health literacy from routine socio-demographic data[J].J Healthc Commun,2015,1(1):1-9.
[22] HANCHATE A D,ASH A S,GAZMARARIAN J A,et al.The Demographic Assessment for Health Literacy(DAHL):a new tool for estimating associations between health literacy and outcomes in national surveys[J].J Gen Intern Med,2008,23(10):1561-1566.
[23] 陈思婷,马艺菲,卓琳,等.苏北某市居民传染病健康素养水平与影响因素分析[J].现代预防医学,2020,47(23):4307-4311.
CHEN S T,MA Y F,ZHUO L,et al.The level of infectious disease health literacy and its influencing factors among residents in a city in northern Jiangsu province[J].Mod Prev Med,2020,47(23):4307-4311.(in Chinese)
[24] LURIE N,MARTIN L T,RUDER T,et al.Estimating and mapping health literacy in the State of Missouri[M].Santa Monica:RAND Corporation,2010.
[25] CAMPBELL P,LEWIS M,CHEN Y,et al.Can patients with low health literacy be identified from routine primary care health records? A cross-sectional and prospective analysis[J].BMC Fam Pract,2019,20(1):1-11.
[26] ROWLANDS G,WHITNEY D,MOON G.Developing and applying geographical synthetic estimates of health literacy in GP clinical systems[J/OL].Int J Environ Res Public Health,2018,15(8)[2024-11-01].https://doi.org/10.3390/ijerph15081709.
[27] LEUNG A Y M,YU E Y T,LUK J K H,et al.Rapid Estimate of Inadequate Health Literacy(REIHL):development and validation of a practitioner-friendly health literacy screening tool for older adults[J].Hong Kong Med J,2020,26(5):404-412.
[28] JEPPESEN K M,COYLE J D,MISER W F.Screening questions to predict limited health literacy:a cross-sectional study of patients with diabetes mellitus[J].Ann Fam Med,2009,7(1):24-31.
[29] GOLDSTEIN B A,NAVAR A M,PENCINA M J,et al.Opportunities and challenges in developing risk prediction models with electronic health records data:a systematic review[J].J Am Med Inform Assoc,2017,24(1):198-208.
[1] 侯锐, 隗瑛琦, 方凯 综述;谢瑾 审校. 老年人群健康素养促进策略研究进展[J]. 预防医学, 2025, 37(2): 154-157.
[2] 吴亚琼, 房新柱. 西安市在校大学生健康素养水平分析[J]. 预防医学, 2025, 37(2): 197-200.
[3] 王苗玲, 童莺歌. 疫苗素养评价工具研究进展[J]. 预防医学, 2024, 36(9): 768-771.
[4] 见明智, 鲁迪, 陈洁, 蒋婷婷. 绍兴市居民吸烟调查[J]. 预防医学, 2024, 36(9): 817-820,824.
[5] 王婷婷, 汪剡灵, 杨玉婷, 王静夷, 陈潇潇. 台州市中学生心理健康素养调查[J]. 预防医学, 2024, 36(9): 821-824.
[6] 汪琼, 陈丹青, 魏伊丽, 钱芳芳. 早产风险预测模型研究[J]. 预防医学, 2024, 36(8): 663-668.
[7] 刘玥, 刘启玲, 苏海霞, 杨鹏, 张玉海. 机器学习法在生存分析中的应用研究[J]. 预防医学, 2024, 36(6): 496-500,505.
[8] 贾铭, 赵华, 彭菊意, 刘星宇, 刘宇丹, 侯嘉宁, 杨佳乐. 慢性病共病患者预后预测模型的范围综述[J]. 预防医学, 2024, 36(6): 491-495.
[9] 祖丽皮耶·吐尔逊, 米也萨·阿迪力, 王艳杰, 向阳. 新疆基层精神卫生防治人员心理健康素养调查[J]. 预防医学, 2024, 36(4): 288-291.
[10] 张伟文, 范玉玺, 霍婷婷, 吴刚, 赵忠年, 吴德. 克拉玛依市居民健康素养分析[J]. 预防医学, 2024, 36(3): 260-263.
[11] 杨娟华, 郎啟智, 李丹, 程远芬, 曹煜. 积极应对方式在医学生健康素养与生活方式间的中介效应分析[J]. 预防医学, 2024, 36(3): 189-192.
[12] 岑琼, 蒋旸, 降菁月, 李晓菲, 向文静, 吕韵云. 应用德尔菲法构建儿童家长口腔健康素养评价指标体系[J]. 预防医学, 2024, 36(3): 193-197.
[13] 童莺歌, 尉烨玲, 钱金伟, 李怡萱, 林莹, 王苗玲, 骆玲玲. 健康素养促进型学校的概念及对我国的启示[J]. 预防医学, 2024, 36(3): 264-267.
[14] 李菊芳, 鄢志梅, 吴洋, 浦韵卿, 宋冬梅. 昆明市脱贫地区居民健康素养调查[J]. 预防医学, 2024, 36(2): 177-180,184.
[15] 段蒋文, 金启韬, 仝振东. 2015—2023年舟山市居民健康素养分析[J]. 预防医学, 2024, 36(10): 905-909.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed