Please wait a minute...
文章检索
预防医学  2024, Vol. 36 Issue (6): 496-500,505    DOI: 10.19485/j.cnki.issn2096-5087.2024.06.009
  综述 本期目录 | 过刊浏览 | 高级检索 |
机器学习法在生存分析中的应用研究
刘玥1,2, 刘启玲1, 苏海霞2,3, 杨鹏2,3 综述, 张玉海2,3 审校
1.陕西中医药大学公共卫生学院,陕西 咸阳 712046;
2.空军军医大学军事预防医学系,陕西 西安 710032;
3.特殊作业环境危害评估与防治教育部重点实验室,陕西 西安 710032
Application of machine learning method for survival analysis
LIU Yue1,2, LIU Qiling1, SU Haixia2,3, YANG Peng2,3, ZHANG Yuhai2,3
1. School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China;
2. Department of Military Preventive Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China;
3. Ministry of Education Key Laboratory of Environmental Hazard Assessment and Prevention in Special Operation, Xi'an, Shaanxi 710032, China
全文: PDF(1512 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 生存分析广泛应用于医学研究领域,Cox比例风险模型是最常用的生存分析模型之一,但实际应用受到限制。机器学习法在非线性数据处理和预测准确度方面能够弥补Cox比例风险模型的不足。本文对以神经网络为代表的机器学习法在生存分析领域的研究进展进行综述,重点介绍DeepSurv、Deep-Hit和随机生存森林3种机器学习生存分析模型的原理和优势,为复杂生存资料的分析提供方法学参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘玥
刘启玲
苏海霞
杨鹏
张玉海
关键词 生存分析机器学习DeepSurvDeep-Hit随机生存森林    
Abstract:Survival analysis has been widely used in the field of medical research. The Cox proportional hazard model is commonly used, but its practical application is limited. Machine learning method can compensate for the shortcomings of the Cox proportional hazard model in terms of nonlinear data processing and prediction accuracy. This article reviewed the advance of machine learning methods represented by neural networks, within the field of survival analysis, and highlighted the principles and benefits of three machine learning methods that DeepSurv, Deep-Hit and random survival forest, providing methodological insights for the analysis of complex survival data.
Key wordssurvival analysis    machine learning    DeepSurv    Deep-Hit    random survival forest
收稿日期: 2024-02-23      修回日期: 2024-05-10      出版日期: 2024-06-10
中图分类号:  R181.1  
基金资助:国家自然科学基金项目(82073662)
作者简介: 刘玥,硕士研究生在读,公共卫生专业
通信作者: 张玉海,E-mail:zhyh@fmmu.edu.cn   
引用本文:   
刘玥, 刘启玲, 苏海霞, 杨鹏, 张玉海. 机器学习法在生存分析中的应用研究[J]. 预防医学, 2024, 36(6): 496-500,505.
LIU Yue, LIU Qiling, SU Haixia, YANG Peng, ZHANG Yuhai. Application of machine learning method for survival analysis. Preventive Medicine, 2024, 36(6): 496-500,505.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2024.06.009      或      http://www.zjyfyxzz.com/CN/Y2024/V36/I6/496
[1] FARAGGI D,SIMON R.A neural network model for survival data[J].Stat Med,1995,14(18):73-82.
[2] SRIVASTAVA N,HINTON G E,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].J Mach Learn Res,2015,15(1):1929-1958.
[3] 邹军华,段晔鑫,任传伦,等.基于噪声初始化、Adam-Nesterov方法和准双曲动量方法的对抗样本生成方法[J].电子学报,2022,50(1):207-216.
[4] 李文琦,黄水平,李海朋.BP神经网络和Cox比例风险模型在生存分析应用中的比较[J].郑州大学学报,2014,49(6):822-825.
[5] XIANG A,LAPUERTA P,RYUTOV A,et al.Comparison of the performance of neural network methods and Cox regression for censored survival data[J].Comput Stat Data An,2000,34(2):243-257.
[6] SARGENT D J.Comparison of artificial neural networks with other statistical approaches:results from medical data sets[J].Cancer,2001,91(8):1636-1642.
[7] KATZMAN J L,SHAHAM U,CLONINGER A,et al.DeepSurv:personalized treatment recommender system using a Cox proportional hazards deep neural network[J/OL].BMC Med Res Methodol,2018,18(1)[2024-05-10].https://doi.org/10.1186/s12874-018-0482-1.
[8] CHING T,ZHU X,GARMIRE L X.Cox-nnet:an artificial neural network method for prognosis prediction of high-throughput omics data[J/OL].PLoS Comput Biol,2018,14(4)[2024-05-10].https://doi.org/10.1371/journal.pcbi.1006076.
[9] ZHU X,YAO J,ZHU F,et al.Wsisa:making survival prediction from whole slide histopathological lmages[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:6855-6863.
[10] YOUSEFI S,AMROLLAHI F,AMGAD M,et al.Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models[J/OL].Sci Rep,2017,7(1)[2024-05-10].https://doi.org/10.1038/s41598-017-11817-6.
[11] LUCK M,SYLVAIN T,CARDINAL H,et al.Deep learning for patient-specific kidney graft survival analysis[J/OL].arXiv,2017[2024-05-10].https://doi.org/10.48550/arXiv.1705.10245.
[12] FOTSO S.Deep neural networks for survival analysis based on a multi-task framework[J/OL].arXiv,2018[2024-05-10].https://doi.org/10.48550/arXiv.1801.05512.
[13] LEE C,ZAME W R,YOON J,et al.DeepHit:a deep learning approach to survival analysis with competing risks[C]//Thirty-Second AAAI Conference on Artificial Intelligence New Orleans,2018:2314-2321.
[14] ISHWARAN H,KOGALUR U B,BLACKSTONE E H,et al.Random survival forests[J/OL].Ann Appl Stat,2008,2(3)[2024-05-10].https://doi.org/10.1214/08-AOAS169.
[15] BIGLARIAN A,BAKHSHI E,GOHARI M R,et al.Artificial neural network for prediction of distant metastasis in colorectal cancer[J].APJCP,2012,13(3):927-930.
[16] RAU H H,HSU C Y,LIN Y A,et al.Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network[J].Comput Methods Programs Biomed,2016,125(4):58-65.
[17] YU H H,HUANG T,FENG B,et al.Deep-learning model for predicting the survival of rectal adenocarcinoma patients based on a surveillance,epidemiology,and end results analysis[J/OL].BMC Cancer,2022,22(13)[2024-05-10].https://doi.org/10.1186/s12885-022-09217-9.
[18] YU H,YANG W,WU S,et al.Deep-learning-based survival prediction of patients with cutaneous malignant melanoma[J/OL].Front Med(Lausanne),2023,10[2024-05-10].https://doi.org/10.3389/fmed.2023.1165865.
[19] ADEOYE J,KOOHI-MOGHADAM M,LO A W I,et al.Deep learning predicts the malignant-transformation-free survival of oral potentially malignant disorders[J/OL].Cancers(Basel),2021,13(23)[2024-05-10].https://doi.org/10.3390/cancers13236054.
[20] SKREDE O J,DE RAEDT S,KLEPPE A,et al.Deep learning for prediction of colorectal cancer outcome:a discovery and validation study[J].Lancet,2020,395(10221):350-360.
[21] KIM B,JANG Y J,CHO H R,et al.Predicting completion of clinical trials in pregnant women:Cox proportional hazard and neural network models[J].Clin Transl Sci,2022,15(3):691-699.
[22] WANG F F,CHEN L,LIU L H,et al.Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the seer database and a multicentre external validation cohort[J].J Cancer Res Clin Oncol,2023,149(13):12177-12189.
[23] JIANG C,WANG K,YAN L Z,et al.Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning:a study based on surveillance,epidemiology,and end results database[J].Cancer Med,2023,12(11):12413-12424.
[24] KIM D Y,CHOI K H,KIM J H,et al.Deep learning-based personalised outcome prediction after acute ischaemic stroke[J].J Neurol Neurosurg Psychiatry,2023,94(5):369-378.
[25] BAE C Y,KIM B S,JEE S H,et al.A study on survival analysis methods using neural network to prevent cancers[J/OL].Cancers,2023,15(19)[2024-05-10].https://doi.org/10.3390/cancers15194757.
[26] ADEOYE J,HUI L L,KOOHI-MOGHADAM M,et al.Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis[J/OL].Int J Med Inform,2022,157[2024-05-10].https://doi.org/10.1016/j.ijmedinf.2021.104635.
[27] LIN J,LI K,LUO S.Functional survival forests for multivariate longitudinal outcomes:dynamic prediction of Alzheimer's disease progression[J].Stat Methods Med Res,2021,30(1):99-111.
[28] KIM D W,LEE S,KWON S,et al.Deep learning-based survival prediction of oral cancer patients[J/OL].Sci Rep,2019,9(1)[2024-05-10].https://doi.org/10.1038/s41598-019-43372-7.
[29] BYUN S S,HEO T S,CHOI J M,et al.Deep learning based prediction of prognosis in nonmetastatic clear cell renal cell carcinoma[J/OL].Sci Rep,2021,11(1)[2024-05-10].https://doi.org/10.1038/s41598-020-80262-9.
[30] WANG D,PAN B,HUANG J C,et al.Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy:a real-world study of distal cholangiocarcinoma[J/OL].Front Oncol,2023,13(2)[2024-05-10].https://doi.org/10.3389/fonc.2023.1106029.
[31] 陈雨轩,韦红霞,潘建红,等.扩展Cox模型在非线性生存资料分析中的预测能力比较[J].南方医科大学学报,2023,43(1):76-84.
[32] 张梦,张利,刘梦雅,等.老年人自评健康状况与死亡风险的关联分析[J].预防医学,2024,36(2):105-108.
[33] 李嵘,张文丽,李扬,等.基于深度学习的大规模肿瘤数据生存分析[J].中国卫生统计,2022,39(1):84-90.
[1] 丁璐璐, 张永辉, 徐源佑, 陈永胜, 王军, 朱健. 1972—2016年启东市肾癌生存分析[J]. 预防医学, 2023, 35(1): 48-52.
[2] 沈蔚, 刘佳琪, 陈俊斐, 应士波, 夏海玲, 冯玲芳, 靳明英, 蒋兆强. 恶性间皮瘤36例患者生存分析[J]. 预防医学, 2022, 34(1): 66-69.
[3] 孙群露, 周宗磊, 詹志强, 涂玉山, 陈晓燕, 李咸志, 栾荣生. 宝安区50岁及以上HIV/AIDS病例生存状况分析[J]. 预防医学, 2021, 33(2): 170-173.
[4] 周涛, 李月飞, 白雪, 胡晓远, 马媛媛, 倪明健. 2005—2019年伊犁州抗病毒治疗吸毒人群HIV/AIDS病例生存分析[J]. 预防医学, 2021, 33(1): 25-30.
[5] 邱玉冰, 许琳, 杨蕊, 陈金瓯. 云南省成功治疗肺结核患者5年复发情况及影响因素分析[J]. 预防医学, 2020, 32(6): 559-562.
[6] 王斌, 龚德光, 朱洁群. 鄞州区艾滋病抗病毒治疗患者生存率及影响因素分析[J]. 预防医学, 2020, 32(4): 346-350.
[7] 杨小丹, 田春艳, 李月友, 毛照明, 贾文涛. 商洛市艾滋病抗病毒治疗病例生存率及影响因素分析[J]. 预防医学, 2020, 32(1): 18-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed