Please wait a minute...
文章检索
预防医学  2024, Vol. 36 Issue (8): 663-668    DOI: 10.19485/j.cnki.issn2096-5087.2024.08.005
  论著 本期目录 | 过刊浏览 | 高级检索 |
早产风险预测模型研究
汪琼1, 陈丹青2, 魏伊丽1, 钱芳芳1
1.浙江大学医学院,浙江 杭州 310000;
2.浙江大学医学院附属妇产科医院,浙江 杭州 310000
Construction of a prediction model for preterm birth risk
WANG Qiong1, CHEN Danqing2, WEI Yili1, QIAN Fangfang1
1. Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China;
2. Obstetrics and Gynecology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
全文: PDF(841 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 构建早产风险预测模型,筛选早产高危人群,预防早产。方法 选择2019年1月1日—12月31日在浙江大学医学院附属妇产科医院产检并分娩的孕妇为研究对象,其中80%纳入建模组,20%纳入验证组,收集人口学信息和临床信息。采用多因素logistic回归模型分析建模组早产风险预测因子,根据预测因子的OR值建立早产风险预测模型;以验证组数据验证模型,采用约登指数最大值筛选模型临界值,采用受试者操作特征(ROC)曲线评估模型的预测效果。结果 调查孕妇15 197人,其中建模组12 131人,验证组3 066人,两组孕妇的年龄、文化程度和孕次等资料差异无统计学意义(均P<0.05)。多因素logistic回归模型分析结果显示,孕次、文化程度、居住地、高血压、糖尿病、早产史、双胎妊娠、前置胎盘和妊娠高血压是早产的风险预测因子。孕次>2次为2分,高中及以下学历为4分,大专/本科以上学历为-4分,居住在农村为5分,高血压为7分,糖尿病为11分,有早产史为11分,双胎妊娠为28分,前置胎盘为19分,妊娠高血压为12分,该模型总分值范围为-4~99分。该模型临界值8分,约登指数最大,为0.480,曲线下面积为0.749(95%CI:0.732~0.767),灵敏度和特度分别为0.610和0.886,提示该模型预测效果良好。结论 本研究基于孕妇人口学和临床特征建立的早产风险预测模型可较好地预测孕妇早产的风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪琼
陈丹青
魏伊丽
钱芳芳
关键词 早产预测模型人口学特征临床特征    
AbstractObjective To construct a prediction model for preterm birth risk among pregnant women, so as to provide the reference for screening high-risk population and preventing preterm birth. Methods Pregnant women who received antenatal examination and delivered at the Women's Hospital, School of Medicine, Zhejiang University from January 1 to December 31, 2019 were selected as the study subjects, among them, 80% were included in the modeling group, and 20% were included in the validation group. Demographic and clinical information were collected. A multivariable logistic regression model was used to analyze the predictive factors of preterm birth risk in the modeling group, and a preterm birth risk prediction model was established based on the OR values of predictive factors. The model was validated with the data from the validation group. The Youden index was used to determine the critical score for predicting preterm birth risk. The prediction performance of the model was evaluated using the receiver operating characteristic (ROC) curve. Results A total of 15 197 pregnant women were surveyed, including 12 131 pregnant women in the observation group and 3 066 pregnant women in the validation group. There was no statistically significant difference in age, education level and gravidity between the two groups of pregnant women (all P<0.05). Multivariable logistic regression analysis identified the number of pregnancies, education level, place of residence, hypertension, diabetes, history of preterm birth, twin-pregnancy, placenta praevia, and gestational hypertension as risk prediction factors for preterm birth risk among pregnant women. The risk score system for preterm birth was established as follows: >2 pregnancies (2 points), high school education or below (4 points), college degree or above (-4 points), rural residence (5 points), hypertension (7 points), diabetes (11 points), history of preterm birth (11 points), twin-pregnancy (28 points), placenta previa (19 points), and gestational hypertension (12 points). The total score of the preterm birth risk scoring system ranged from -4 to 99 points. When the critical score was 8 points, the Youden index was the highest at 0.480, with an area under the ROC curve of 0.749 (95%CI: 0.732-0.767), a sensitivity of 0.610, and a specificity of 0.886, indicating good prediction performance of the model. Conclusion The preterm birth risk prediction model established in this study based on demographic and clinical characteristics of pregnant women can effectively predict the risk of preterm birth among pregnant women.
Key wordspreterm birth    prediction model    demographic characteristics    clinical characteristics
收稿日期: 2024-02-18      修回日期: 2024-06-23      出版日期: 2024-08-10
中图分类号:  R714  
作者简介: 汪琼,硕士研究生在读,主治医师,主要从事妇产科临床工作
通信作者: 陈丹青,E-mail:chendq@zju.edu.cn   
引用本文:   
汪琼, 陈丹青, 魏伊丽, 钱芳芳. 早产风险预测模型研究[J]. 预防医学, 2024, 36(8): 663-668.
WANG Qiong, CHEN Danqing, WEI Yili, QIAN Fangfang. Construction of a prediction model for preterm birth risk. Preventive Medicine, 2024, 36(8): 663-668.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2024.08.005      或      http://www.zjyfyxzz.com/CN/Y2024/V36/I8/663
[1] CHAWANPAIBOON S,VOGEL J P,MOLLER A B,et al.Global,regional,and national estimates of levels of preterm birth in 2014:a systematic review and modelling analysis[J].Lancet Glob Health,2019,7(1):37-46.
[2] JONES A J,EKE U A,EKE A C.Prediction and prevention of preterm birth in pregnant women living with HIV on antiretroviral therapy[J].Expert Rev Anti Infect Ther,2022,20(6):837-848.
[3] 陈桂儿,周金英.单胎妊娠自发性早产的影响因素研究[J].预防医学,2024,36(3):251-254.
[4] OSKOVI KAPLAN Z A,OZGU-ERDINC A S.Prediction of preterm birth:maternal characteristics,ultrasound markers,and biomarkers:an updated overview[J/OL].J Pregnancy,2018[2024-06-23].http://doi.org/10.1155/2018/8367571.
[5] SWEET D G,CARNIELLI V P,GREISEN G,et al.European Consensus Guidelines on the Management of Respiratory Distress Syndrome:2022 update[J].Neonatology,2023,120(1):3-23.
[6] 蓝仙梅,罗霞,郑晓红,等.丽水市单胎活产儿早产的影响因素分析[J].预防医学,2021,33(3):313-316.
[7] SCHAAF J M,RAVELLI A C,MOL B W,et al.Development of a prognostic model for predicting spontaneous singleton preterm birth[J].Eur J Obstet Gynecol Reprod Biol,2012,164(2):150-155.
[8] 于永中,李天麟.GB 3869—83 中华人民共和国国家标准体力劳动强度分级[J].化工劳动保护,1999,20(5/6):15-16.
[9] OFTEDAL A M,BUSTERUD K,IRGENS L M,et al.Socio-economic risk factors for preterm birth in Norway 1999-2009[J].Scand J Public Health,2016,44(6):587-92.
[10] MARGERISON C E,LUO Z H,LI Y,Economic conditions during pregnancy and preterm birth:a maternal fixed-effects analysis[J].Paediatr Perinat Epidemiol,2019,33(2):154-161.
[11] 王飞雪,丁悦虹,许凌.浙江省孕前优生健康检查结果分析[J].预防医学,2019,31(7):742-743,747.
[12] WEI Y M,XU Q,YANG H X,et al.Preconception diabetes mellitus and adverse pregnancy outcomes in over 6.4 million women:a population-based cohort study in China[J].PLoS Med,2019,16(10):1-15.
[13] ALLEN A J,SNOWDEN J M,LAU B,et al.Type-2 diabetes mellitus:does prenatal care affect outcomes?[J].J Matern Fetal Neonatal Med,2018,31(1):93-97.
[14] MENZIES R,LI A L K,MURPHY K E,et al.Risk of singleton preterm birth after prior twin preterm birth:a cohort study[J].J Matern Fetal Neonatal Med,2020,33(21):3602-3607.
[15] FUCHS F,SENAT M V.Multiple gestations and preterm birth[J].Semin Fetal Neonatal Med,2016,21(2):113-120.
[16] TAKAI I U,SAYYADI B M,GALADANCI H S.Antepartum hemorrhage:a retrospective analysis from a Northern Nigerian teaching hospital[J].Int J Appl Basic Med Res,2016,7(2):112-116.
[17] PREMKUMAR A,HENRY D E,MOGHADASSI M,et al.The interaction between maternal race/ethnicity and chronic hypertension on preterm birth[J/OL].Am J Obstet Gynecol,2016,215[2024-06-23].https://doi.org/10.1016/j.ajog.2016.08.019.
[18] DAVIES E L,BELL J S,BHATTACHARYA S.Preeclampsia and preterm delivery:a population-based case-control study[J].Hypertens Pregnancy,2016,35(4):510-519.
[19] YANG Y Y,LE RAY I,ZHU J,et al.Preeclampsia prevalence,risk factors,and pregnancy outcomes in Sweden and China[J/OL].JAMA Netw Open,2021,4(5)[2024-06-23].https://doi.org/10.1001/jamanetworkopen.2021.8401.
[20] CELIK E,TO M,GAJEWSKA K,et al.Cervical length and obstetric history predict spontaneous preterm birth: development and validation of a model to provide individualized risk assessment[J].Ultrasound Obstet Gynecol,2008,31(5):549-554.
[1] 贾铭, 赵华, 彭菊意, 刘星宇, 刘宇丹, 侯嘉宁, 杨佳乐. 慢性病共病患者预后预测模型的范围综述[J]. 预防医学, 2024, 36(6): 491-495.
[2] 陈桂儿, 周金英. 单胎妊娠自发性早产的影响因素研究[J]. 预防医学, 2024, 36(3): 251-254.
[3] 张艳丽, 朱鹏, 杨蓉, 王鑫鑫, 尹晓光. 早产儿呼吸窘迫综合征肺表面活性物质治疗两种给药方法比较[J]. 预防医学, 2023, 35(9): 757-761.
[4] 门光国, 鲁徐丹, 王丽丽. 初乳对早产儿免疫球蛋白A水平影响的Meta分析[J]. 预防医学, 2023, 35(5): 431-435,439.
[5] 何亚盛, 张红霞, 倪银, 朱越燕, 彭敏, 杨丹红. 急诊重症监护病房住院患者医院感染的预测模型研究[J]. 预防医学, 2022, 34(9): 919-922.
[6] 郁小红, 钱棪梅, 周晨洁, 马越, 唐艳超, 邹玲莉. 应用TreeNet算法建立原发性高血压早期预测模型[J]. 预防医学, 2022, 34(9): 923-927.
[7] 余红, 陈晓霞, 吴长划, 沈沛. 早产儿体格生长和神经发育的早期综合干预效果评价[J]. 预防医学, 2022, 34(8): 771-775.
[8] 王迎丹, 高春洁, 王蕾. 5种时间序列模型预测肺结核发病比较[J]. 预防医学, 2022, 34(12): 1194-1200.
[9] 蓝仙梅, 罗霞, 郑晓红, 周小燕. 丽水市单胎活产儿早产的影响因素分析[J]. 预防医学, 2021, 33(3): 313-316.
[10] 程芳, 刘赛朵, 叶新春, 郑世林, 吴特, 张强, 施伎蝉. 新型冠状病毒肺炎普通型和重症病例临床特征比较[J]. 预防医学, 2020, 32(9): 886-890.
[11] 费云霞, 张祥波, 高岭, 高依丹, 李鸽, 朱旭平, 邵俊斌, 汪浩秋, 潘劲草, 陈公英. 登革病毒载量与患者临床特征的关系[J]. 预防医学, 2020, 32(4): 334-338.
[12] 吴长划, 钟菲. 2007—2018年绍兴市新生儿早产趋势分析[J]. 预防医学, 2020, 32(2): 135-138.
[13] 张婉婷, 王诗慧, 杨伊蓓, 毛盈颖, 叶丁. 孕期饮茶与早产、流产风险关联的Meta分析[J]. 预防医学, 2020, 32(1): 37-41.
[14] 张芝银, 李秀央, 郑国英, 黄晶, 周红. 不良妊娠结局的影响因素分析[J]. 预防医学, 2020, 32(1): 94-97.
[15] 李如霞, 王楸, 曹肃婷, 张昌静. 早产儿维生素D水平及影响因素分析[J]. 预防医学, 2019, 31(8): 848-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed