Please wait a minute...
文章检索
预防医学  2024, Vol. 36 Issue (10): 842-846,850    DOI: 10.19485/j.cnki.issn2096-5087.2024.10.004
  论著 本期目录 | 过刊浏览 | 高级检索 |
隔日温差对呼吸系统疾病死亡风险的影响
李树芬1, 倪志松1, 程传龙1, 左慧1, 梁珂梦1, 宋思豪1, 席睿1, 杨淑霞2, 崔峰2, 李秀君1
1.山东大学齐鲁医学院公共卫生学院生物统计学系,山东 济南 250012;
2.淄博市疾病预防控制中心,山东 淄博 255026
Effect of temperature changes between neighboring days on mortality risk of respiratory diseases
LI Shufen1, NI Zhisong1, CHENG Chuanlong1, ZUO Hui1, LIANG Kemeng1, SONG Sihao1, XI Rui1, YANG Shuxia2, CUI Feng2, LI Xiujun1
1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China;
2. Zibo Center for Disease Control and Prevention, Zibo, Shandong 255026, China
全文: PDF(1422 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 探讨隔日温差(TCN)对呼吸系统疾病死亡的影响,为应对气候变化导致的呼吸系统疾病死亡研究提供依据。方法 通过山东省慢病、死因监测综合管理信息系统收集2015—2019年淄博市呼吸系统疾病死亡监测资料,通过中国气象数据网站和中国高分辨率高质量近地表空气污染物数据集分别收集同期气象和空气污染物资料。采用广义相加模型结合分布滞后非线性模型分析TCN对呼吸系统疾病死亡的滞后效应和累积滞后效应,并按性别和年龄进行亚组分析;计算归因分值评估TCN造成的归因风险。结果 2015—2019年淄博市报告呼吸系统疾病死亡11 767例;其中男性6 648例,占56.50%;女性5 119例,占43.50%。<65岁1 307例,占11.11%;≥65岁10 460例,占88.89%。TCN对总人群、女性、≥65岁人群呼吸系统疾病死亡的暴露-反应关系呈单调递增趋势。第95百分位数(P95)TCN(3.84 ℃)对总人群呼吸系统疾病死亡风险的效应在累积滞后11 d时达到峰值(RR=2.063,95%CI:1.261~3.376);亚组分析结果显示,P95 TCN对女性和≥65岁人群影响更大,累积滞后效应分别在12 d(RR=3.119,95%CI:1.476~6.589)、11 d(RR=2.107,95%CI:1.260~3.523)达到峰值。归因风险分析结果显示,隔日升温可引起呼吸系统疾病死亡归因风险的上升,隔日降温则引起归因风险下降。结论 隔日升温增加呼吸系统疾病死亡风险,且对女性和≥65岁人群影响更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李树芬
倪志松
程传龙
左慧
梁珂梦
宋思豪
席睿
杨淑霞
崔峰
李秀君
关键词 呼吸系统疾病隔日温差分布滞后非线性模型归因风险    
AbstractObjective To investigate the impact of temperature changes between neighboring days (TCN) on the mortality risk of respiratory diseases, so as to provide the evidence for the study of deaths from respiratory diseases caused by climate change. Methods The monitoring data of deaths from respiratory diseases in Zibo City from 2015 to 2019 were collected from Shandong Provincial Management Information System for Chronic Diseases and Cause of Death Surveillance. The meteorological and air pollutant data of the same period were collected from China Meteorological Data Website and ChinaHighAirPollutants dataset. The effect of TCN on the risk of deaths from respiratory diseases was examined using a generalized additive model combined with a distributed lag non-linear model, and subgroup analyses for gender and age were conducted. The disease burden attributed to TCN at different intervals was assessed by calculating attributable fraction. Results Totally 11 767 deaths from respiratory diseases were reported in Zibo City from 2015 to 2019, including 6 648 males (56.50%) and 5 119 females (43.50%). There were 1 307 deaths aged <65 years (11.11%), and 10 460 deaths aged 65 years and older (88.89%). A monotonically increasing exposure-response relationship was observed between TCN and deaths from respiratory diseases in the general population, females, and the population aged 65 years and older. The 95th percentile of TCN (P95, 3.84 ℃) reached the peak at a cumulative lagged of day 11 (RR=2.063, 95%CI: 1.261-3.376). The results of subgroup analyses showed greater impacts on females and the population aged 65 years and older, with cumulative lagged effects peaking at day 12 (RR=3.119, 95%CI: 1.476-6.589) and day 11 (RR=2.107, 95%CI: 1.260-3.523). The results of attributional risk analysis showed that next-day warming might increase the attributable risk of deaths from respiratory diseases, and next-day cooling might decrease the attributable risk. Conclusion Next-day warming may increase the mortality risk of respiratory diseases, and has greater impacts on females and the population aged 65 years and older.
Key wordsrespiratory diseases    temperature changes between neighboring days    distributed lag non-linear model    attributable fraction
收稿日期: 2024-06-17      修回日期: 2024-09-06      出版日期: 2024-10-10
中图分类号:  R122  
基金资助:国家重点研发计划项目(2023YFC2604400)
作者简介: 李树芬,硕士研究生在读,公共卫生专业
通信作者: 李秀君,E-mail:xjli@sdu.edu.cn   
引用本文:   
李树芬, 倪志松, 程传龙, 左慧, 梁珂梦, 宋思豪, 席睿, 杨淑霞, 崔峰, 李秀君. 隔日温差对呼吸系统疾病死亡风险的影响[J]. 预防医学, 2024, 36(10): 842-846,850.
LI Shufen, NI Zhisong, CHENG Chuanlong, ZUO Hui, LIANG Kemeng, SONG Sihao, XI Rui, YANG Shuxia, CUI Feng, LI Xiujun. Effect of temperature changes between neighboring days on mortality risk of respiratory diseases. Preventive Medicine, 2024, 36(10): 842-846,850.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2024.10.004      或      http://www.zjyfyxzz.com/CN/Y2024/V36/I10/842
[1] 中国疾病预防控制中心慢性非传染性疾病预防控制中心.中国死因监测数据集(2021)[M].北京:中国科学技术出版社,2022.
[2] CHEN R J,YIN P,WANG L J,et al.Association between ambient temperature and mortality risk and burden:time series study in 272 main Chinese cities[J/OL].BMJ,2018,363[2024-09-06].https://doi.org/10.1136/bmj.k4306.
[3] 谷少华,金永高,陆蓓蓓,等.2013—2018年宁波市高温热浪致超额死亡风险评价[J].预防医学,2021,33(9):897-901,905.
[4] 谷少华,陆蓓蓓,王永,等.高温健康风险预警的气象指标研究[J].预防医学,2022,34(8):803-808,815.
[5] XIAO Y,MENG C Z,HUANG S L,et al.Short-term effect of temperature change on non-accidental mortality in Shenzhen,China[J/OL].Int J Environ Res Public Health,2021,18(16)[2024-09-06].https://doi.org/10.3390/ijerph18168760.
[6] GUO Y M,BARNETT A G,YU W W,et al.A large change in temperature between neighbouring days increases the risk of mortality[J/OL].PLoS One,2011,6(2)[2024-09-06].https://doi.org/10.1371/journal.pone.0016511.
[7] ZHAN Z Y,ZHAO Y,PANG S J,et al.Temperature change between neighboring days and mortality in United States: a nationwide study [J].Sci Total Environ,2017,584/585:1152-1161.
[8] ZHA Q W,CHAI G R,ZHANG Z G,et al.Impact of temperature changes between neighboring days on cardiovascular disease hospital admissions among suburban farmers in Qingyang, Northwest China[J].Int J Biometeorol,2022,66(6):1233-1245.
[9] TIAN P P,LU H W,XUE Y X.Characterization of temperature difference between the neighboring days in China and its potential driving factors[J].Int J Climatol,2019,39(12):4659-4668.
[10] WEI J,LI Z Q,LI K,et al.Full-coverage mapping and spatiotemporal variations of ground-level ozone(O3)pollution from 2013 to 2020 across China [J/OL].Remote Sens Environ,2022,270[2024-09-06].https://doi.org/10.1016/j.rse.2021.112775.
[11] WEI J,LI Z Q,LYAPUSTIN A,et al.Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications[J/OL].Remote Sens Environ,2021,252[2024-09-06].https://doi.org/10.1016/j.rse.2020.112136.
[12] WEI J,LI Z Q,WANG J,et al.Ground-level gaseous pollutants (NO2,SO2,and CO) in China:daily seamless mapping and spatiotemporal variations[J].Atmos Chem Phys,2023,23(2):1511-1532.
[13] WEI J,LI Z Q,XUE W,et al.The China high PM10 dataset:generation, validation, and spatiotemporal variations from 2015 to 2019 across China[J/OL].Environ Int,2021,146[2024-09-06].https://doi.org/10.1016/j.envint.2020.106290.
[14] GASPARRINI A.Modeling exposure-lag-response associations with distributed lag non-linear models[J].Stat Med,2014,33(5):881-899.
[15] CHEN F,DENG Z B,DENG Y,et al.Attributable risk of ambient PM10 on daily mortality and years of life lost in Chengdu,China[J].Sci Total Environ,2017,581/582:426-433.
[16] CHENG J,XU Z W,ZHAO D S,et al.Impacts of temperature change on ambulance dispatches and seasonal effect modification[J].Int J Biometeorol,2016,60(12):1863-1871.
[17] GAO J J,YU F,XU Z H,et al.The association between cold spells and admissions of ischemic stroke in Hefei,China:modified by gender and age[J].Sci Total Environ,2019,669:140-147.
[18] ALTMAN D G,BLAND J M.Interaction revisited:the difference between two estimates[J].BMJ,2003,326(7382):219.
[19] 谷少华,贺天锋,陆蓓蓓,等.基于分布滞后非线性模型的归因风险评估方法及应用[J].中国卫生统计,2016,33(6):959-962.
[20] CHEN J M,GAO Y,JIANG Y X,et al.Low ambient temperature and temperature drop between neighbouring days and acute aortic dissection:a case-crossover study[J].Eur Heart J,2022,43(3):228-235.
[1] 吴丹红, 王伟霞, 王良友, 乔冬菊, 黄依璐, 张嫣. 台州市4类慢性病死亡及早死概率分析[J]. 预防医学, 2024, 36(5): 428-431,436.
[2] 王瑶, 潘璠, 张欢, 陈亚飞, 秦伟. 气温对六安市水痘发病风险的影响研究[J]. 预防医学, 2023, 35(8): 692-696.
[3] 聂东梅, 李一鹏, 黄妍. 2012—2021年江门市4类慢性病早死概率分析[J]. 预防医学, 2023, 35(7): 602-606.
[4] 关新朋, 徐洪兵, 方嘉堃, 朱雨桐, 刘凌燕, 赵茜, 宋晓明, 徐保平, 黄薇. 大气NOX和NO2急性暴露与儿童呼吸系统疾病门诊量的关联研究[J]. 预防医学, 2023, 35(3): 185-189,195.
[5] 李朝康, 龚科米, 吕烨, 徐珊珊, 吕娜, 叶春, 朱冰, 刘卫艳, 高兵, 徐虹. 杭州市大气污染对居民死亡的影响研究[J]. 预防医学, 2023, 35(1): 11-16.
[6] 程伟, 周晓燕, 余昭, 刘社兰, 潘金仁, 凌锋, 陈恩富. 2016—2019年浙江省流行性感冒超额死亡率分析[J]. 预防医学, 2022, 34(9): 865-869.
[7] 徐琪, 叶辉, 朱冰, 傅华萍. 大气PM2.5与呼吸系统、心脑血管疾病急救病例数的相关性研究[J]. 预防医学, 2022, 34(7): 710-714.
[8] 何宝华, 周晓红, 席胜军, 杨青. 2005—2020年下城区30~69岁居民4种慢性病早死概率分析[J]. 预防医学, 2022, 34(11): 1172-1177.
[9] 谷少华, 金永高, 陆蓓蓓, 王爱红, 张丹丹. 2013—2018年宁波市高温热浪致超额死亡风险评价[J]. 预防医学, 2021, 33(9): 897-901,905.
[10] 杨君崎, 李江峰, 樊丽辉, 张默涵, 姜雪霞. 温州市四类慢性病早死概率及去死因期望寿命分析[J]. 预防医学, 2021, 33(2): 178-180.
[11] 杨金华, 李昊, 沈飞琼, 李其龙. 2010-2017年嘉善县四类慢性病早死概率[J]. 预防医学, 2021, 33(2): 185-187,191.
[12] 丁璐璐, 张永辉, 徐源佑, 陈永胜, 王军, 朱健. 1990—2019年启东市呼吸系统疾病死亡趋势及减寿分析[J]. 预防医学, 2021, 33(11): 1149-1152,1156.
[13] 徐珊珊,吕烨,刘卫艳,徐虹,章美,叶春,叶辉. 大气PM2.5污染对淳安县居民呼吸系统疾病和症状的影响[J]. 预防医学, 2021, 33(10): 988-993.
[14] 刘勋, 孟秋雨. 江津区气温对感染性腹泻发病的影响研究[J]. 预防医学, 2021, 33(10): 1046-1049.
[15] 何晓庆, 王小红, 罗进斌. 大气PM10与呼吸系统疾病死亡的关系研究[J]. 预防医学, 2019, 31(10): 987-991.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed