Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (3): 253-257    DOI: 10.19485/j.cnki.issn2096-5087.2022.03.008
  综述 本期目录 | 过刊浏览 | 高级检索 |
肠道微生物与糖尿病病理机制研究进展
方媛 综述, 哈小琴 审校
联勤保障部队第九四〇医院检验科,甘肃 兰州 730000
Research progress of intestinal microorganisms and pathogenesis of diabetes mellitus
FANG Yuan, HA Xiaoqin
Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People Liberation Amy, Lanzhou, Gansu 730000, China
全文: PDF(793 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 肠道微生物作为人体最大的微生态系统,参与人体的物质和能量代谢,对人体健康有重大影响。糖尿病易导致肠道微生物丰度失调和组分改变,降低多样性和平衡性引发肠道失调。肠道失调可通过肠道微生物代谢产物减少、炎性反应和胰岛素抵抗等促进糖尿病的发生发展。本文综述肠道微生物通过短链脂肪酸、胆汁酸和脂多糖等代谢产物参与糖尿病发病的机制,以及肠道微生物介导的糖尿病治疗现状,为糖尿病与肠道微生物研究提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方媛
哈小琴
关键词 肠道微生物糖尿病短链脂肪酸胆汁酸脂多糖益生菌    
Abstract:As the largest human microecosystem, intestinal microorganisms participate in human material and energy metabolisms and pose a significant impact on human health. Diabetes mellitus is likely to cause imbalance of abundance and component alterations in intestinal microorganisms, and reduce the diversity and balance, leading to intestinal microflora dysregulation. It has been shown that intestinal microflora dysregulation may promote diabetes development and progression through the reduction of intestinal microbial metabolites, inflammatory reaction and insulin resistance. This review summarizes the involvement of intestinal microorganisms in the pathogenesis of diabetes through metabolites including short-chain fatty acid, bile acid and lipopolysaccharide, and describes the current status of intestinal microorganisms-mediated treatments for diabetes, so as to provide the theoretical basis for the researches on diabetes and intestinal microorganisms.
Key wordsintestinal microorganism    diabetes mellitus    short-chain fatty acid    bile acid    lipopolysaccharide    probiotic
收稿日期: 2021-09-17      修回日期: 2021-12-27      出版日期: 2022-03-10
中图分类号:  R587  
基金资助:国家自然科学基金(81700272)
通信作者: 哈小琴,E-mail:haxiaoqin2013@163.com   
作者简介: 方媛,硕士,主要从事肠道微生物研究
引用本文:   
方媛, 哈小琴. 肠道微生物与糖尿病病理机制研究进展[J]. 预防医学, 2022, 34(3): 253-257.
FANG Yuan, HA Xiaoqin. Research progress of intestinal microorganisms and pathogenesis of diabetes mellitus. Preventive Medicine, 2022, 34(3): 253-257.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.03.008      或      http://www.zjyfyxzz.com/CN/Y2022/V34/I3/253
[1] World Health Organization.Diabetes[EB/OL].(2021-11-10)[2021-12-27]. https://www.who.int/news-room/fact-sheets/detail/diabetes.
[2] WANG L M,GAO P,ZHANG M,et al.Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J].JAMA,2017,317(24):2515-2523.
[3] YEHUALASHET A S,YIKNA B B.Microbial ecosystem in diabetes mellitus:consideration of the gastrointestinal system[J].Diabetes Metab Syndr Obes,2021,14:1841-1854.
[4] TREMAROLI V,BÄCKHED F.Functional interactions between the gut microbiota and host metabolism[J].Nature,2012,489(7415):242-249.
[5] DAVID L A,MAURICE C F,CARMODY R N,et al.Diet rapidly and reproducibly alters the human gut microbiome[J].Nature,2014,505(7484):559-563.
[6] MEHTA R S,ABU-ALI G S,DREW D A,et al.Stability of the human faecal microbiome in a cohort of adult men[J].Nat Microbiol,2018,3(3):347-355.
[7] WANG T Y,ZHANG X Q,CHEN A L,et al.A comparative study of microbial community and functions of type 2 diabetes mellitus patients with obesity and healthy people[J].Appl Microbiol Biotechnol,2020,104(16):7143-7153.
[8] PASCAL V,POZUELO M,BORRUEL N,et al.A microbial signature for Crohn's disease[J].Gut,2017,66(5):813-822.
[9] BAKHSHIMOGHADDAM F,ALIZADEH M.Modulation of the gut microbiota represents a new management for non-alcoholic fatty liver disease[J].HepatoBiliary Surg Nutr,2020,9(2):223-226.
[10] YADAV M,VERMA M,CHAUHAN N S.A review of metabolic potential of human gut microbiome in human nutrition[J].Arch Microbiol,2018,200(2): 203-217.
[11] BROWN C T,DAVIS-RICHARDSON A G,GIONGO A,et al.Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes[J/OL].PLoS One,2017,6(10)[2021-12-27].https://doi.org/10.1371/journal.pone.0025792.
[12] HARBISON J E,ROTH SCHULZE A J,GILES L C,et al.Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes:a prospective cohort study[J]. Pediatr Diabetes,2019,20(5):574-583.
[13] MA Q T,LI Y Q,WANG J K,et al.Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing[J/OL].Biomed Pharmacother,2020,124[2021-12-27].https://doi.org/10.1016/j.biopha.2020.109873.
[14] SIKALIDIS A K,MAYKISH A.The gut microbiome and type 2 diabetes mellitus:discussing a complex relationship[J/OL].Biomedicines,2020,8(1)[2021-12-27].https://doi.org/10.3390/biomedicines8010008.
[15] 肖瑶,牛玥,毛明慧,等.2型糖尿病与肠道核心菌群的相关性[J].南方医科大学学报,2021,41(3):358-369.
XIAO Y,NIU Y,MAO M H,et al.Correlation analysis between type 2 diabetes and core gut microbiota[J].J South Med Univ,2021,41(3):358-369.
[16] HU R X,YUAN Y T,LIU C L,et al.New insights into the links with anti-diabetes drugs and gut microbiota[J/OL].Endocr Connect,2020,10(1)[2021-12-27].https://doi.org/10.1530/EC-20-0431.
[17] KARLSSON F H,TREMAROLI V,NOOKAEW I,et al.Gut metagenome in European women with normal,impaired and diabetic glucose control[J].Nature,2013,498(7452):99-103.
[18] QIN J J,LI Y R,Cai Z M,et al.A metagenome-wide association study of gut microbiota in type 2 diabetes[J].Nature,2012,490:55-60.
[19] ZHU T T,GOODARZI M O.Metabolites linking the gut microbiome with risk for type 2 diabetes[J].Curr Nutr Rep,2020,9(2):83-93.
[20] BARTOSZEK A,MOO E V,BINIENDA A,et al.Free fatty acid receptors as new potential therapeutic target in inflammatory bowel diseases[J/OL].Pharmacol Res,2020,152[2021-12-27].https://doi.org/10.1016/j.phrs.2019.104604.
[21] XIA F,WEN L P,GE B C,et al.Gut microbiota as a target for prevention and treatment of type 2 diabetes:mechanisms and dietary natural products[J].World J Diabetes,2021,12(8):1146-1163.
[22] MARIALETIZIA R,CLAUDE K,CANI P D.Gut microbes and health:a focus on the mechanisms linking microbes,obesity,and related disorders[J].Obesity,2018,26(5):792-800.
[23] DUBOIS V,EECKHOUTE J,LEFEBVRE P,et al.Distinct but complementary contributions of PPAR isotypes to energy homeostasis[J].J Clin Invest,2017,127(4):1202-1214.
[24] AGUILAR E C,SILVA J F d,NAVIA-PELAEZ J M,et al.Sodium butyrate modulates adipocyte expansion,adipogenesis,and insulin receptor signaling by upregulation of PPAR-γ in obese ApoE knockout mice[J].Nutrition,2018,47(5):75-82.
[25] MASLOWSKI K,VIEIRA A,AYLWIN N,et al.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J].Nature,2009,461:1282-1286.
[26] YANG Q Y,OUYANG J,SUN F J,et al.Short-chain fatty acids:a soldier fighting against inflammation and protecting from tumorigenesis in people with diabetes[J/OL].Front Immunol,2020[2021-12-27].https://doi.org/10.3389/fimmu.2020.590685.
[27] YU Z Q,YANG J Y,XIANG D,et al.Circadian rhythms and bile acid homeostasis:a comprehensive review[J].Chronobiol Int,2020,37(5):618-628.
[28] BOZADJIEVA N,HEPPNER K M,SEELEY R J.Targeting FXR and FGF19 to treat metabolic diseases-lessons learned from bariatric surgery[J].Diabetes,2018,67(9):1720-1728.
[29] IKEGAMI T,HONDA A.Reciprocal interactions between bile acids and gut microbiota in human liver diseases[J].Hepatol Res,2018,48(1):15-27.
[30] HE W,REBELLO O,SAVINO R,et al.TLR4 triggered complex inflammation in human pancreatic islets[J].Biochim Biophys Acta Mol Basis Dis,2019,1865(1):86-97.
[31] CANI P D,BIBILONI R,KNAUF C,et al.Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J].Diabetes,2008,57(6):1470-1481.
[32] GRAHAM C,MULLEN A,WHELAN K.Obesity and the gastrointestinal microbiota:a review of associations and mechanisms[J].Nutr Rev,2015,73(6):376-385.
[33] WANG G Q,LIU J,XIA Y J,et al.Probiotics-based interventions for diabetes mellitus:a review[J/OL].Food Biosci,2021,43[2021-12-27].https://doi.org/10.1016/j.fbio.2021.101172.
[34] ADESHIRLARIJANEY A,GEWIRTZ A T.Considering gut microbiota in treatment of type 2 diabetes mellitus[J].Gut Microbes,2020,11(3):253-264.
[35] TIDERENCEL K A,HUTCHEON D A,ZIEGLER J.Probiotics for the treatment of type 2 diabetes:a review of randomized controlled trials[J/OL].Diabetes/Metab Res Rev,2020,36(1)[2021-12-27].https://doi.org/10.1002/dmrr.3213.
[36] KOOTTE R S,LEVIN E,SALOJÄRVI J,et al.Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition[J].Cell Metab,2017,26(4):611-619.
[37] WANG H,LU Y,YAN Y,et al.Promising treatment for type 2 diabetes:fecal microbiota transplantation reverses insulin resistance and impaired islets[J/OL]. Front Cell Infect Microbiol,2019,9(5)[2021-12-27].https://doi.org/10.3389/fcimb.2019.00455.
[38] DE GROOT P,NIKOLIC T,PELLEGRINI S,et al.Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial[J].Gut,2020,70(1)92-105.
[39] GANESAN K,CHUANG S K,VANAMALA J,et al.Causal relationship between diet-induced gut microbiota changes and diabetes:a novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes[J/OL].Int J Mol Sci,2018,19(12)[2021-12-27].https://doi.org/10.3390/ijms19123720.
[40] VRIEZE A,VAN NOOD E,HOLLEMAN F,et al.Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome[J].Gastroenterology,2012,143(4):913-916.
[41] ZHAO L P,ZHANG F,DING X Y,et al.Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J].Science,2018,359(6380):1151-1156.
[1] 张铁威, 张艳, 刘冰, 秦康, 李标, 徐珏. 2013—2021年杭州市糖尿病死亡及疾病负担分析[J]. 预防医学, 2023, 35(9): 752-756.
[2] 张丹平, 徐玲妙. 糖尿病与血管性痴呆发病的关联、病理机制及防治策略研究[J]. 预防医学, 2023, 35(7): 582-586.
[3] 柏旭, 苏洁, 李凤, 徐倩, 沈源, 肖凌凤. 我国成人糖尿病视网膜病变影响因素的Meta分析[J]. 预防医学, 2023, 35(7): 595-601.
[4] 聂东梅, 李一鹏, 黄妍. 2012—2021年江门市4类慢性病早死概率分析[J]. 预防医学, 2023, 35(7): 602-606.
[5] 丁承辉, 吴萃, 薛琨, 励晓红, 万金豹, 陈秋艳, 朱潇翔. 宝山区糖尿病高危人群筛查结果分析[J]. 预防医学, 2023, 35(6): 509-513.
[6] 沈放如, 杨可, 刘厚璞, 朱家豪, 李迎君. 新生儿出生体重与母亲2型糖尿病关联的双向孟德尔随机化研究[J]. 预防医学, 2023, 35(5): 384-387,409.
[7] 马奕竹, 赵效国, 朱启英, 马依拉·买买提, 张环美, 苑晓琳, 李莉. 孕期膳食模式与妊娠糖尿病的关联研究[J]. 预防医学, 2023, 35(4): 286-290.
[8] 刘国志, 袁空军, 庄蔚, 周光清. 国内外城市社区2型糖尿病健康管理模式比较[J]. 预防医学, 2023, 35(3): 262-266.
[9] 谢睿, 胡菊莲, 喻喆. 妊娠糖尿病患者生活质量的影响因素研究[J]. 预防医学, 2023, 35(2): 162-165.
[10] 顾逸藜, 孙晓燕, 谢臻蔚. 女性糖尿病与压力性尿失禁研究进展[J]. 预防医学, 2023, 35(2): 130-133.
[11] 李娜娜, 张师静, 陈巧敏, 栗浩然, 王雅莉. 孕前体质指数与妊娠糖尿病的剂量-反应关系[J]. 预防医学, 2023, 35(10): 829-833.
[12] 张雅婷, 郝晓刚, 王炜, 焦仕林, 方春福, 张幸. 衢州市肺结核合并糖尿病病例特征分析[J]. 预防医学, 2023, 35(1): 57-60.
[13] 姜佳佳, 李峰, 房冬冬, 尤文君, 王伟伟. 2型糖尿病患者非增殖型糖尿病性视网膜病变的影响因素分析[J]. 预防医学, 2023, 35(1): 17-20.
[14] 汤洋, 李琳, 廖兴, 林坚. 2型糖尿病患者体感运动联合神经肌肉穴位电刺激干预效果评价[J]. 预防医学, 2022, 34(8): 794-798.
[15] 高明妃, 胡如英, 胡崇高. 中国糖尿病死亡流行特征研究进展[J]. 预防医学, 2022, 34(7): 692-695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed