Please wait a minute...
文章检索
预防医学  2021, Vol. 33 Issue (12): 1236-1239    DOI: 10.19485/j.cnki.issn2096-5087.2021.12.010
  综述 本期目录 | 过刊浏览 | 高级检索 |
尘肺病影像学诊断的研究进展
曾刘桃, 陈钧强, 蒋兆强 综述, 徐秀芳 审校
杭州医学院公共卫生学院,浙江 杭州 310051
Progress in imaging diagnosis of pneumoconiosis
ZENG Liutao*, CHEN Junqiang, JIANG Zhaoqiang, XU Xiufang
*School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310051, China
全文: PDF(998 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 尘肺病是我国危害严重的一类职业病。早期影像学检查是诊断和防治尘肺病的重要措施之一。数字化X线摄影(DR)、计算机断层扫描(CT)在尘肺病筛查诊断中有着重要的地位,近年来兴起的人工智能技术在尘肺病诊断中也有一定应用。本文综述了DR技术参数调试与质量控制、人工智能计算机辅助系统优化以及CT辅助尘肺病诊断等方面的最新进展,总结了3类技术的优点及目前应用中存在的问题,为尘肺病影像学诊断提供研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾刘桃
陈钧强
蒋兆强
徐秀芳
关键词 尘肺病诊断数字化X线摄影人工智能计算机断层扫描    
Abstract:Pneumoconiosis is a serious occupational disease in China. Early imaging examination is one of the important measures for the diagnosis, treatment and prevention of pneumoconiosis. Digital radiography (DR) and computed tomography (CT) play an important role in the screening and diagnosis of pneumoconiosis, as well as the recent rise of artificial intelligence (AI) technology. This paper reviews the latest progress in technical parameter debugging and quality control of DR, optimization of AI computer-aided system and CT-aided diagnosis of pneumoconiosis, summarizes the advantages and problems in the application of the three technologies, providing research directions for imaging diagnosis of pneumoconiosis.
Key wordspneumoconiosis    diagnosis    digital radiography    artificial intelligence    computed tomography
收稿日期: 2021-08-02      出版日期: 2021-12-03
ZTFLH:  R135.2  
  R445  
基金资助:国家自然科学基金(61976075); 浙江省重点研发计划(2019C03002); 浙江省医药卫生科技计划项目(2019RC142)
通信作者: 徐秀芳,E-mail:2659189077@qq.com   
作者简介: 曾刘桃,硕士,主要从事尘肺病影像诊断研究
引用本文:   
曾刘桃, 陈钧强, 蒋兆强, 徐秀芳. 尘肺病影像学诊断的研究进展[J]. 预防医学, 2021, 33(12): 1236-1239.
ZENG Liutao, CHEN Junqiang, JIANG Zhaoqiang, XU Xiufang. Progress in imaging diagnosis of pneumoconiosis. Preventive Medicine, 2021, 33(12): 1236-1239.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2021.12.010      或      http://www.zjyfyxzz.com/CN/Y2021/V33/I12/1236
[1] HAN S,CHEN H,HARVEY M A,et al.Focusing on coal workers'lung diseases:a comparative analysis of China,Australia,and the United States[J].Int J Environ Res Public Health,2018,15(11):1-26.
[2] PERRET J L,PLUSH B,LACHAPELLE P,et al.Coal mine dust lung disease in the modern era[J].Respirology,2017,22(4):662-670.
[3] 李德鸿. 不要把尘肺病防治引入歧途[J].环境与职业医学,2018,35(4):283-285.
[4] 中华人民共和国国家卫生健康委员会.2019年我国卫生健康事业发展统计公报[J].中国实用乡村医生杂志,2020,27(9):1-11.
[5] 张柏林,罗军,纪祥,等.平板探测器数字化X线摄影在尘肺病患者诊断中的应用价值[J].中国药物经济学,2015(7):181-183.
[6] FRANZBLAU A,TEWATERNAUDE J,SEN A,et al.Comparison of digital and film chest radiography for detection and medical surveillance of silicosis in a setting with a high burden of tuberculosis[J].Am J Ind Med,2018,61(3):229-238.
[7] 李巍伟,乔洪涛,李辉,等.尘肺数字化X线摄影胸片质量控制中星卡的应用[J].中华劳动卫生职业病杂志,2018,36(3):208-211.
[8] 赵佳骏,蒋兆强,张敏,等.多窗口技术在尘肺病数字化X线摄影中的应用[J].中华劳动卫生职业病杂志,2017,35(7):505-507.
[9] 刘亚,胡茂能,徐婷婷,等.胸部数字摄影窗口技术在尘肺诊断中的应用价值[J].安徽医学,2018,39(9):1060-1063.
[10] 王峥,刘瑞珍,韩书进.数字化X线摄影在尘肺病诊断中图像后处理参数的优化与评价[J].智慧健康,2019,5(26):6-8.
[11] 余梁,周丽芬,徐婷婷,等.数字X线摄影联合双能量减影技术在尘肺病诊断中的应用价值[J].安徽医学,2018,39(9):1093-1095.
[12] LEE W,LEE S,CHONG S,et al.Radiation dose reduction and improvement of image quality in digital chest radiography by new spatial noise reduction algorithm[J].PLoS One,2020,15(2):e0228609.
[13] MOORE C S,WOOD T,AVERY G,et al.Use of a computer simulator to investigate optimized tube voltage for chest imaging of average patients with a digital radiography(DR)imaging system[J/OL].Br J Radiol,2019,92(1104)(2019-10-07)[2021-09-03].https://doi.org/10.1259/bjr.20190470.
[14] 中华人民共和国国家卫生和计划生育委员会.职业性尘肺病的诊断:GBZ 70—2015[S].北京:中国标准出版社,2016.
[15] 张敏,陈钧强.人工智能技术在尘肺病诊断中的应用研究进展[J].环境与职业医学,2020,37(2):192-196.
[16] RAJKOMAR A,LINGAM S,TAYLOR A G,et al.High-throughput classification of radiographs using deep convolutional neural networks[J].J Digit Imaging,2017,30(1):95-101.
[17] ANNARUMMA M,WITHEY S J,BAKEWELL R J,et al.Automated triaging of adult chest radiographs with deep artificial neural networks[J].Radiology,2019,291(1):196-202.
[18] WANG X,YU J,ZHU Q,et al.Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography[J].Occup Environ Med,2020,77(9):597-602.
[19] 王峥,贺文.深度残差网络在尘肺病诊断中的应用初探[J].中国工业医学,2019,32(1):31-33.
[20] OKUMURA E,KAWASHITA I,ISHIDA T.Computerized classification of pneumoconiosis on digital chest radiography artificial neural network with three stages[J].J Digit Imaging,2017,30(4):413-426.
[21] 罗海峰,翟荣存.傅里叶功率谱在尘肺阴影密集度判读中的应用[J].铜陵学院学报,2019,18(3):111-114.
[22] 罗海峰,翟荣存.灰度共生矩阵在尘肺阴影密集度判读中的应用[J].计算机应用与软件,2015(2):171-177.
[23] SINGH R,KALRA M K,NITIWARANGKUL C,et al.Deep learning in chest radiography:detection of findings and presence of change[J].PLoS One,2018,13(10):e0204155.
[24] 王成霞,王宁宁,仇路,等.尘肺病胸部CT与DR胸片影像差异研究[M].职业与健康,2021,37(1):5-10.
[25] CHA Y K,KIM J S,KIM Y,et al.Radiologic diagnosis of asbestosis in Korea[J].Korean J Radiol,2016,17(5):674-683.
[26] PREISSER A M,SCHLEMMER K,HEROLD R,et al.Relations between vital capacity,CO diffusion capacity and computed tomographic findings of former asbestos-exposed patients:across-sectional study[J/OL].J Occup Med Toxicol,2020,15[2021-09-03].https://www.researchgate.net/publication/342607568_Relations_between_vital_capacity_CO_diffusion_capacity_and_computed_tomographic_findings_of_former_asbestos-exposed_patients_A_cross-sectional_study.DOI:10.1186/s12995-020-00272-1.
[27] MCBEAN R,NEWBIGIN K,DICKINSON S,et al.Radiological appearance of coal mine dust lung diseases in Australian workers[J].J Med Imaging Radiat Oncol,2018,62(6):794-797.
[28] MASANORI A.Imaging diagnosis of classical and new pneumoconiosis:predominant reticular HRCT pattern[J/OL].Insights Imaging,2021,12[2021-09-03].https://doi.org/10.1186/s13244-021-00966-y.
[29] ŞENER M U,ŞIMŞEK C,ÖZKARAŞ,et al.Comparison of the International Classification of High-resolution Computed Tomography for occupational and environmental respiratory disease with the International Labor Organization International Classification of Radiographs of Pneumoconiosis[J].Ind Health,2019,57(4):495-502.
[30] 张柏林,雷益,纪祥,等.多排螺旋CT诊断职业性尘肺病的价值评价[J].职业卫生与应急救援,2019,37(3):218-221.
[31] 兰军,杨滢,王德华,等.多层螺旋CT冠状面重建图像用于尘肺诊断的标准研究与临床应用[J].中外医学研究,2018,16(15):63-64.
[32] HERTH F J F,KIRBY M,SIEREN J,et al.The modern art of reading computed tomography images of the lungs:quantitative CT[J].Respiration,2018,95(1):8-17.
[33] HERNANDEZ-ROMIEU A C,LITTLE B P,BERNHEIM A,et al.Increasing number and volume of cavitary lesions on chest computed tomography are associated with prolonged time to culture conversion in pulmonary tuberculosis[J].Open Forum Infect Dis,2019,6(6):1-13.
[34] 宋辉. HRCT检查在尘肺合并肺结核中的诊断价值[J].河南医学研究,2020,29(13):2438-2440.
[35] 王芝文. 胸部CT诊断尘肺及其合并症的临床分析[J].中国社区医师,2016,32(3):119-121.
[36] MANNERS D,WONG P,MURRAY C,et al.Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis[J].Eur Radiol,2017,27(8):3485-3490.
[37] LUDES C,SCHAAL M,LABANI A,et al.Ultra-low dose chest CT:the end of chest radiograph?[J].Presse Med,2016,45(3):291-301.
[38] SCHAAL M,SEVERAC F,LABANI A,et al.Diagnostic performance of ultra-low-dose computed tomography for detecting asbestos-related pleuropulmonary diseases:prospective study in a screening setting[J].PLoS One,2016,11(12):e0168979.
[39] 陈丽琨,晋子文,胡碧华,等.低剂量多层螺旋CT最大密度投影在尘肺病中的应用[J].辽宁医学杂志,2018,32(1):46-48.
[40] WETZL M,MAY M S,WEINMANN D,et al.Potential for radiation dose reduction in dual-source computed tomography of the lung in the pediatric and adolescent population compared to digital radiography[J/OL].Diagnostics(Basel),2021,11(2)[2021-09-03].https://doi.org/10.3390/diagnostics11020270.
[41] WETZL M,MAY M S,WEINMANN D,et al.Dual-source computed tomography of the lung with spectral shaping and advanced iterative reconstruction:potential for maximum radiation dose reduction[J].Pediatr Radiol,2020,50(9):1240-1248.
[1] 张琴, 朱琰泓, 彭谦, 季莹, 袁红, 郁恺, 董玉婷, 王支兰, 彭慧. 嘉定区4~5年级小学生心理健康状况调查[J]. 预防医学, 2020, 32(9): 873-877.
[2] 李涛, 贾君麟, 施理, 王晶, 李益琪, 王小林, 李梦娜, 郭心念, 方圆, 王焕强, 楼建林. 尘肺病患者住院行为的影响因素分析[J]. 预防医学, 2020, 32(8): 790-794.
[3] 丁芳, 俞蔚, 胡世云, 宣诚, 俞柳燕, 陈奇峰, 范敏华, 刘庆敏, 徐小玲, 严静. 诊室血压联合动态血压监测诊断高血压研究[J]. 预防医学, 2020, 32(5): 460-465.
[4] 张群平, 徐华军, 陈文显. 三阴乳腺癌与非三阴乳腺癌超声声像图特征鉴别分析[J]. 预防医学, 2020, 32(3): 318-320.
[5] 陶学芳, 邵银燕, 孙金军, 杨国彪. 基于症状的慢性阻塞性肺疾病筛查问卷诊断效果评价[J]. 预防医学, 2019, 31(7): 693-695.
[6] 岳永宁, 范大鹏, 张艳, 陈园园, 鲍志坚, 朱敏. 三种结核分枝杆菌分子检测技术诊断肺结核比较[J]. 预防医学, 2019, 31(5): 537-540.
[7] 刘立宾, 潘爱珍, 王静, 李浩, 岳永宁, 朱敏. T-SPOT.TB和SAT-TB联合检测诊断涂阴肺结核[J]. 预防医学, 2019, 31(4): 426-429.
[8] 孔江英,韩光玺,杨爱平,汪敏. 血清淀粉样蛋白A与C反应蛋白联合检测在手足口病临床诊断中的价值[J]. 预防医学, 2019, 31(11): 1186-1188.
[9] 高守芝, 贺健梅, 郑军, 周艳君, 陈曦. 湖南省医疗机构梅毒报告质量评价[J]. 预防医学, 2019, 31(1): 33-37.
[10] 顾翼洋, 孙晓艳, 陈定华, 唐红梅. 嘉兴市出生缺陷监测资料分析[J]. 预防医学, 2019, 31(1): 92-94.
[11] 王强,朱波,杨陆婷,杨勇. 乳腺数字化摄影检查辐射剂量影响因素分析[J]. 预防医学, 2018, 30(4): 400-401.
[12] 秦华, 陈惠慧, 孙燕, 陈小琴, 王红英, 俞鸣. 应用彩色多普勒超声辅助诊断尘肺病患者胸膜病变[J]. 预防医学, 2018, 30(3): 301-302.
[13] 潘稚芬, 袁亚芳, 张君丽, 张鹭. 结核分枝杆菌耐多药相关蛋白筛选及诊断价值研究[J]. 预防医学, 2018, 30(12): 1212-1216.
[14] 徐卉, 张颖敏, 沈志强. 唾液皮质醇水平的睡眠障碍诊断价值研究[J]. 预防医学, 2018, 30(11): 1084-1087.
[15] 张华芳, 邹国斌. 47例恙虫病临床特征及误诊情况分析[J]. 预防医学, 2018, 30(11): 1167-1169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed