|
|
Received: 11 May 2018
Revised: 31 July 2018
Published: 06 November 2018
|
|
|
|
|
[1] 周琴. 利用ARIMA乘积季节模型预测某综合医院门诊量[J]. 中国医院统计,2016,23(2):141-142. [2] 张忠瑜,张晓琴. 统计预测在医院门诊管理中的应用[J]. 金山,2010(4):122. [3] 陈田木,刘如春,谢知,等. 流行性感冒数学建模研究进展[J].中国热带医学,2014,14(7):890-894. [4] 王燕. 时间序列分析——基于R[M]. 北京:中国人民大学出版社,2015:11-219. [5] 黄春萍,刘仕俊,丁华,等. 杭州市麻疹发病数的ARIMA模型预测[J]. 现代预防医学,2014,41(11):1935-1937,1944. [6] 郭慧敏,杜军,黄路非. 基于R语言ARIMA模型在慢阻肺急性加重患者发病预测中的应用[J].中国卫生统计,2017,34(2):288-289,292. [7] 储文杰,金凯玲,林凯,等. 基于ARIMA乘积季节模型预测产超广谱β-内酰胺酶大肠埃希菌流行趋势研究[J]. 预防医学,2018,30(7):680-684. [8] 王金娜,徐若君,黄大锟,等. ARIMA乘积季节模型预测永嘉县其他感染性腹泻的流行[J]. 预防医学,2017,29(2):150- 154. [9] KABACOFF R I. R语言实战[M]. 王小宁,刘撷芯,黄俊文,等译. 2版. 北京:人民邮电出版社,2016:315-341. [10] WANG C,LI Y,FENG W,et al. Epidemiological features and forecast model analysis for the morbidity of influenza in Ningbo,China,2006-2014[J]. Int J Environ Res Public Health,2017, 14(6):559. [11] 孙振球,徐勇勇. 医学统计学(第3版)[M]. 北京:人民卫生出版社,2010:383-404. [12] KE G,HU Y,HUANG X,et al. Epidemiological analysis of hemorrhagic fever with renal syndrome in China with the seasonal-trend decomposition method and the exponential smoothing model[J]. Sci Rep,2016,6:39350. [13] 龚磊,吴家兵,侯赛. ARIMA模型在安徽省流行性感冒发病预测中的应用[J]. 公共卫生与预防医学,2015,26(2):4-7. [14] 孟蕾,王玉明. ARIMA模型在肺结核发病预测中的应用[J]. 中国卫生统计,2010,27(5):507-509. [15] 张磊,刘艳红. 指数平滑法在预测深圳市宝安区肺结核病人发病人数的应用[J]. 实用预防医学,2014,21(8):911-913, 903. [16] OMAR H,HOANG V H,LIU D R. A hybrid neural network model for sales forecasting based on ARIMA and search popularity of article titles[J]. Comput Intell Neurosci,2016,2016(4):1-9. [17] 郭新颖. ARIMA模型与指数平滑法对山东省GDP的实证分析[J]. 甘肃科技,2016,32(13):81-82. [18] LEWIS C D,胡晚霞. 工业和商业预测方法(指数平滑法和曲线拟合法实用指南)[J]. 预测,1985(S1):155-193. |
[1] |
XU Yunhan, PAN Jiahao, HE Yusa, YE Bingqi, XIE Renxiang, MAIHEMUTI Tunishaguli, XU Xin, WANG Dina, WANG Daosen, YU Linjie, CHEN Minhe, YAN Ruochen, XUE Kexin, FU Yajing, YE Huaizhuang, WU Xifeng, LI Xiuyang. Intention and satisfaction of people aged 18 to 25 years to seek medical advice in primary medical institutions in Zhejiang Province[J]. Preventive Medicine, 2020, 32(8): 767-773. |
|
|
|