Please wait a minute...
文章检索
预防医学  2024, Vol. 36 Issue (9): 741-745,749    DOI: 10.19485/j.cnki.issn2096-5087.2024.09.002
  论著 本期目录 | 过刊浏览 | 高级检索 |
2型糖尿病合并非酒精性脂肪肝的预测模型研究
郑帅印1,2, 李丽丹3, 陈佩弟1, 谢尔瓦妮古丽·阿卜力米提4, 李砥5,6,7
1.新疆第二医学院公共卫生学院,新疆 克拉玛依 834000;
2.新疆第二医学院教务处,新疆 克拉玛依 834000;
3.新疆第二医学院,新疆 克拉玛依 834000;
4.喀什大学医学院,新疆 喀什 844000;
5.新疆维吾尔自治区人民医院克拉玛依医院,新疆 克拉玛依 834000;
6.新疆消化系统肿瘤精准医疗临床医学研究中心,新疆 克拉玛依 834000;
7.新疆临床基因检测与生物医学信息重点实验室,新疆 克拉玛依 834000
Prediction of non-alcoholic fatty liver in patients with type 2 diabetes mellitus
ZHENG Shuaiyin1,2, LI Lidan3, CHEN Peidi1, Xieerwaniguli·Abulimiti4, LI Di5,6,7
1. School of Public Health, Xinjiang Second Medical College, Karamay, Xinjiang 834000, China;
2. Academic Affairs Office of Xinjiang Second Medical College, Karamay, Xinjiang 834000, China;
3. Xinjiang Second Medical University, Karamay, Xinjiang 834000, China;
4. Kashgar University School of Medicine, Kashgar, Xinjiang 844000, China;
5. Karamay Hospital of People′s Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang 834000, China;
6. Xinjiang Digestive System Tumor Precision Medical Clinical Medical Research Center, Karamay, Xinjiang 834000, China;
7. Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay, Xinjiang 834000, China
全文: PDF(1099 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 构建中老年2型糖尿病(T2DM)病例合并非酒精性脂肪肝(NAFLD)风险的预测模型,为T2DM合并NAFLD早期筛查和预防提供依据。方法 选择2021年在新疆维吾尔自治区人民医院克拉玛依医院确诊的≥45岁T2DM病例为研究对象,收集病例基本信息、血液生化指标等资料,按照7∶3比例将病例随机纳入训练组(n=3 241)和验证组(n=1 389)。采用LASSO回归和多因素logistic回归模型筛选预测因子;建立T2DM合并NAFLD风险预测模型,采用受试者工作特征(ROC)曲线、校准曲线和决策曲线(DCA)评估预测效能。结果 纳入T2DM病例4 630例,其中合并NAFLD 1 279例,占27.62%。LASSO回归和多因素logistic回归分析结果显示,性别、年龄、舒张压、体质指数、血清谷丙转氨酶、三酰甘油、低密度脂蛋白胆固醇和血小板计数是T2DM合并NAFLD的风险预测因子。训练组和验证组模型建立的ROC曲线下面积分别为0.823(95%CI:0.814~0.832)和0.809(95%CI:0.799~0.818),Hosmer-Lemeshow拟合优度检验显示模型拟合度较好(P>0.05),DCA结果显示当病例的风险阈值概率为0.27~0.85时,使用该预测模型预测NAFLD风险的临床净收益较高。结论 本研究构建的预测模型对≥45岁T2DM病例合并NAFLD风险具有较好的评估价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑帅印
李丽丹
陈佩弟
谢尔瓦妮古丽·阿卜力米提
李砥
关键词 2型糖尿病非酒精性脂肪肝预测因子列线图    
AbstractObjective To construct a prediction model of non-alcoholic fatty liver disease (NAFLD) in middle-aged and elderly patients with type 2 diabetes mellitus (T2DM), so as to provide basis for early screening and prevention of T2DM complicated with NAFLD. Methods Patients aged 45 years and above and diagnosed with T2DM in Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region in 2021 were collected as the study subjects. The data of general demographic characteristics and biochemical test results were collected. The patients were randomly divided into training group (n=3 241) and validation group (n=1 389) according to the ratio of 7∶3. LASSO regression and multivariable logistic regression model were used to select predictive factors. The nomograph model for prediction of NAFLD risk in T2DM patients was established. The predictive value of the model was evaluated using the receiver operating characteristic (ROC), adjusted curve and decision clinical analysis. Results Totally 4 630 T2DM cases were included, including 1 279 cases (27.62%) complicated with NAFLD. LASSO regression and multivariable logistic regression analysis identified gender, age, diastolic blood pressure, body mass index, alanine transaminase, triglycerides, low density lipoprotein cholesterol and platelet count as risk prediction factors for NAFLD in T2DM patients. The area under the ROC curve was 0.823 (95%CI: 0.814-0.832) for the training group and 0.809 (95%CI: 0.799-0.818) for the validation group, and Hosmer-Lemeshow test showed a good fitting effect (P>0.05). Decision curve analysis showed higher net clinical benefit of using the predictive model to predict NAFLD risk when the risk threshold probability was 0.27 to 0.85. Conclusion The nomogram model established has a good predictive value for the risk of NAFLD in T2DM patients aged 45 years and above.
Key wordstype 2 diabetes mellitus    non-alcoholic fatty liver disease    predictor    nomogram
收稿日期: 2024-06-03      修回日期: 2024-08-26      出版日期: 2024-09-10
中图分类号:  R587.1  
基金资助:新疆维吾尔自治区高校科研计划项目(XJEDU2022P147); “天山英才”医药卫生高层次人才培养计划(中青年骨干); 克拉玛依市中心医院科技项目(YK2022-4)
作者简介: 郑帅印,硕士,讲师,主要从事慢性病预防与控制工作
通信作者: 李砥,E-mail:358477093@qq.com   
引用本文:   
郑帅印, 李丽丹, 陈佩弟, 谢尔瓦妮古丽·阿卜力米提, 李砥. 2型糖尿病合并非酒精性脂肪肝的预测模型研究[J]. 预防医学, 2024, 36(9): 741-745,749.
ZHENG Shuaiyin, LI Lidan, CHEN Peidi, Xieerwaniguli·Abulimiti, LI Di. Prediction of non-alcoholic fatty liver in patients with type 2 diabetes mellitus. Preventive Medicine, 2024, 36(9): 741-745,749.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2024.09.002      或      http://www.zjyfyxzz.com/CN/Y2024/V36/I9/741
[1] 唐英琪,李英,田坚.2型糖尿病患者合并非酒精性脂肪性肝病的影响因素分析[J].预防医学,2021,33(3):292-294,298.
[2] CHEN K,SNG W K,QUAH J H,et al.Clinical spectrum of non-alcoholic fatty liver disease in patients with diabetes mellitus[J/OL].PLoS One,2020,15(8)[2024-08-26].https://doi.org/10.1371/journal.pone.0236977.
[3] EN LI CHO E,ANG C Z,QUEK J,et al.Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus:an updated systematic review and meta-analysis[J].Gut,2023,72(11):2138-2148.
[4] TAKYAR V,ETZION O,HELLER T,et al.Complications of percutaneous liver biopsy with Klatskin needles:a 36-year single-centre experience[J].Aliment Pharmacol Ther,2017,45(5):744-753.
[5] 周瑞芬,杜秋菊,姚国萍,等.杭州市45~69岁人群非酒精性脂肪性肝病与2型糖尿病相关性研究[J].预防医学,2020,32(8):809-812.
[6] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2017年版)[J].中国实用内科杂志,2018,38(4):292-344.
[7] 中华医学会肝病学分会脂肪肝和酒精性肝病学组,中国医师协会脂肪性肝病专家委员会.非酒精性脂肪性肝病防治指南(2018年更新版)[J].临床肝胆病杂志,2018,34(5):947-957.
[8] 陈芳,刘岚.上海某社区老年人肝胆超声体检结果分析[J].上海医药,2021,42(16):45-47.
[9] ROBEVA R,MLADENOVIĆ D,VESKOVIĆ M,et al.The interplay between metabolic dysregulations and non-alcoholic fatty liver disease in women after menopause[J].Maturitas,2021,151:22-30.
[10] MA J,HWANG S J,PEDLEY A,et al.Bi-directional analysis between fatty liver and cardiovascular disease risk factors[J].J Hepatol,2017,66(2):390-397.
[11] POLYZOS S A,KOUNTOURAS J,MANTZOROS C S.Obesity and nonalcoholic fatty liver disease:from pathophysiology to therapeutics[J].Metabolism,2019,92:82-97.
[12] ANGELICO F,BARATTA F,PASTORI D,et al.Statins and non-alcoholic fatty liver disease[J].Liver Int,2019,39(9):1787-1795.
[13] MARTIN A,LANG S,GOESER T,et al.Management of dyslipidemia in patients with non-alcoholic fatty liver disease[J].Curr Atheroscler Rep,2022,24(7):533-546.
[14] SUN D Q,WU S J,LIU W Y,et al.Association of low-density lipoprotein cholesterol within the normal range and NAFLD in the non-obese Chinese population:a cross-sectional and longitudinal study[J/OL].BMJ Open,2016,6(12)[2024-08-26].https://doi.org/10.1136/bmjopen-2016-013781.
[15] GIANNOPOULOS C K,TZIMA I G,TENTOLOURIS N K,et al.Common pathogenetic pathways of non-alcoholic fatty liver disease and type 2 diabetes mellitus[J/OL].Curr Diabetes Rev,2023,19(9)[2024-08-26].https://doi.org/10.2174/1573399819666230216112032.
[16] KORPIMÄKI S,ROVIO S P,JUONALA M,et al.Nonalcoholic fatty liver disease incidence and remission and their predictors during 7 years of follow-up among finns[J/OL].J Clin Endocrinol Metab,2023,109(1)[2024-08-26].https://doi.org/10.1210/clinem/dgad418.
[17] CHAO Y L,WU P Y,HUANG J C,et al.Hepatic steatosis is associated with high white blood cell and platelet counts[J].Biomedicines,2022,10(4):892-904.
[18] 张沥今,魏夏琰,陆嘉琦,等.Lasso回归:从解释到预测[J].心理科学进展,2020,28(10):1777-1788.
[19] 李永生,张学良,李丞,等. 2型糖尿病周围神经病变风险的列线图预测模型研究[J].中国全科医学,2022,25(6):675-681.
[20] 周梓萌,洪忻.心血管病高危人群预测模型研究[J].预防医学,2024,36(3):211-214,218.
[1] 崔彦泽, 张玲, 蒋璐, 李慧敏, 王硕. 衰弱与2型糖尿病的孟德尔随机化研究[J]. 预防医学, 2024, 36(9): 786-789.
[2] 李欢, 张敬红, 余丹, 金文舒, 倪少梅, 吴天凤. 老年2型糖尿病患者血清维生素D与甲状腺功能指标的关联分析[J]. 预防医学, 2024, 36(8): 702-705.
[3] 王慧, 高霞, 朱晓云, 马芳军. 社区2型糖尿病患者血糖控制达标的影响因素分析[J]. 预防医学, 2024, 36(5): 423-427.
[4] 陆艳, 李琼珊, 孟迪云, 梅丽娜, 丁忠英, 李雯雯, 储华, 秦玲. 双胎妊娠孕妇子痫前期风险预测模型研究[J]. 预防医学, 2024, 36(4): 283-287.
[5] 周梦姣, 李美琳, 孔利萍. 老年2型糖尿病患者社会疏离感的影响因素研究[J]. 预防医学, 2024, 36(4): 292-295.
[6] 周梓萌, 洪忻. 心血管病高危人群预测模型研究[J]. 预防医学, 2024, 36(3): 211-214.
[7] 林芳, 刘素贞, 江海燕. 老年2型糖尿病患者营养不良的影响因素分析[J]. 预防医学, 2024, 36(1): 61-64, 69.
[8] 柏旭, 苏洁, 李凤, 徐倩, 沈源, 肖凌凤. 我国成人糖尿病视网膜病变影响因素的Meta分析[J]. 预防医学, 2023, 35(7): 595-601.
[9] 沈放如, 杨可, 刘厚璞, 朱家豪, 李迎君. 新生儿出生体重与母亲2型糖尿病关联的双向孟德尔随机化研究[J]. 预防医学, 2023, 35(5): 384-387,409.
[10] 高梦阳, 娄鹏威, 马丽, 李惠, 黄玉婷, 王璐, 王凯. 甲状腺乳头状癌中央区淋巴结转移预测模型研究[J]. 预防医学, 2023, 35(3): 229-234.
[11] 刘国志, 袁空军, 庄蔚, 周光清. 国内外城市社区2型糖尿病健康管理模式比较[J]. 预防医学, 2023, 35(3): 262-266.
[12] 杨秀琳, 马宗康, 马霞, 马鑫. 东乡族自治县农村居民传染病健康素养调查[J]. 预防医学, 2023, 35(2): 166-170.
[13] 王晓薇, 许艳岚. 老年2型糖尿病患者认知衰弱风险预测研究[J]. 预防医学, 2023, 35(12): 1037-1042.
[14] 汤洋, 李琳, 廖兴, 林坚. 2型糖尿病患者体感运动联合神经肌肉穴位电刺激干预效果评价[J]. 预防医学, 2022, 34(8): 794-798.
[15] 孙霞, 朱艳, 郑鹏, 徐爱花, 董海娜. 超重肥胖和2型糖尿病对瘦素、内脂素的影响研究[J]. 预防医学, 2022, 34(6): 581-585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed