Please wait a minute...
文章检索
预防医学  2023, Vol. 35 Issue (2): 166-170    DOI: 10.19485/j.cnki.issn2096-5087.2023.02.019
  健康教育 本期目录 | 过刊浏览 | 高级检索 |
东乡族自治县农村居民传染病健康素养调查
杨秀琳, 马宗康, 马霞, 马鑫
西北民族大学医学部护理系,甘肃 兰州 730030
Investigation of infectious disease-specific health literacy among rural residents in Dongxiang Autonomous County
YANG Xiulin, MA Zongkang, MA Xia, MA Xin
Department of Nursing, Medical College, Northwest Minzu University, Lanzhou, Gansu 730030, China
全文: PDF(900 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 分析甘肃省临夏州东乡族自治县(东乡县)农村居民传染病健康素养的影响因素,并构建列线图模型预测居民传染病健康素养具备情况。方法 采用分层随机抽样方法抽取东乡县≥15岁农村居民1 250人,采用《中国居民传染病健康素养测评量表》进行调查;建立多因素logistic回归模型分析传染病健康素养的影响因素,并在此基础上构建列线图模型,采用受试者操作特征曲线、Hosmer-Lemeshow检验和C-index评价模型效率。结果 有效调查1 223人,其中男性687人,占56.17%;女性536人,占43.83%。东乡县农村居民传染病健康素养具备率为48.48%。多因素logistic回归分析结果显示,年龄(≥60岁为参照,30~<40岁,OR=4.273,95%CI:2.397~7.617;40~<50岁,OR=3.938, 95%CI:2.238~6.928)、文化程度(不识字或少识字为参照,小学,OR=2.140,95%CI:1.456~3.144;高中/高职/中专,OR=2.914,95%CI:1.652~5.138;大专及以上,OR=4.514,95%CI:2.261~9.011)、近2周就诊/服药(是为参照,否,OR=2.025,95%CI:1.346~3.046)、自评健康状况(好为参照,一般,OR=0.603,95%CI:0.376~0.966;不好,OR=0.462,95%CI:0.284~0.751)和日均上网时长(不上网为参照,<1 h,OR=1.859,95%CI:1.306~3.437;1~<2 h,OR=1.996,95%CI:1.344~3.380;2~<3 h,OR=2.132,95%CI:1.109~3.116;≥3 h,OR=2.119,95%CI:1.175~3.390)是东乡县农村居民传染病健康素养的影响因素。列线图模型的曲线下面积为0.774(95%CI:0.741~0.807);Hosmer-Lemeshow检验χ2=13.276,P=0.103;Bootstrap内部验证平均绝对误差为0.019,C-index为0.764,提示模型有较好的校准度和区分度。结论 年龄、文化程度、近2周就诊/服药、自评健康状况和日均上网时长是东乡县农村居民传染病健康素养的影响因素;在此基础上构建的列线图模型对该地居民传染病健康素养具备情况有较好的预测效率和适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨秀琳
马宗康
马霞
马鑫
关键词 传染病健康素养影响因素列线图农村    
AbstractObjective To investigate the influencing factors of infectious disease-specific health literacy (IDSHL) among rural residents in Dongxiang Autonomous County, and to construct a nomogram-based model for prediction of IDSHL. Methods Totally 1 250 rural residents at ages of 15 years and older were sampled from Dongxiang Autonomous County using a stratified random sampling method. Participants' IDSHL was evaluated using the IDSHL Assessment Scale among Chinese Residents, and factors affecting the participants' IDSHL were identified using a multivariable logistic regression model. A nomogram-based model was created, and the predictive effectiveness of this model was evaluated using the receiver operating characteristic (ROC) curve, Hosmer-Lemeshow test and C-index. Results A total of 1 223 valid respondents were enrolled, including 687 men (56.17%) and 536 women (43.83%), and the proportion of IDSHL was 48.48%. Multivariable logistic regression analysis identified age (reference: 60 years and older; 30 to <40 years: OR=4.273, 95%CI: 2.397-7.617; 40 to <50 years: OR=3.938, 95%CI: 2.238-6.928), education level (reference: illiteracy/semi-illiteracy; primary school: OR=2.140, 95%CI: 1.456-3.144; high school/vocational high school/technical secondary school: OR=2.914, 95%CI: 1.652-5.138; junior college and above: OR=4.514, 95%CI: 2.261-9.011), healthcare seeking/medications in the past 2 weeks (reference: yes; no: OR=2.025, 95%CI: 1.346-3.046), self-rated health (reference: good; generally: OR=0.603, 95%CI: 0.376-0.966; poor: OR=0.462, 95%CI: 0.284-0.751) and daily average duration spent online (reference: no internet access; <1 h: OR=1.859, 95%CI: 1.306-3.437; 1 to <2 h, OR=1.996, 95%CI: 1.344-3.380; 2 to <3 h: OR=2.132, 95%CI: 1.109-3.116; 3 h and longer: OR=2.119, 95%CI: 1.175-3.390) as factors affecting IDSHL among rural residents in Dongxiang Autonomous County. The area under the ROC curve of the model was 0.774 (95%CI: 0.741-0.807) and the model had high calibration and differentiation levels [Hosmer-Lemeshow test: χ2=13.276, P=0.103; internal model validation (bootstrapping): mean absolute error=0.019; C-index=0.764]. Conclusions Age, education level, healthcare seeking/medications in the past 2 weeks, self-rated health status and daily average duration spent online are factors affecting IDSHL among rural residents in Dongxiang Autonomous County. The nomogram model created based on these factors has a high efficiency and applicability for prediction of IDSHL among rural residents in Dongxiang Autonomous County.
Key wordsinfectious disease-specific health literacy    influencing factor    nomogram    rural area
收稿日期: 2022-11-15      出版日期: 2023-02-21
中图分类号:  R193.3  
基金资助:甘肃省科学技术厅技术引导创新计划项目(20CX9ZA115); 甘肃省教育厅创新基金项目(2020B-072); 西北民族大学中央高校项目(31920190207)
作者简介: 杨秀琳,硕士,讲师,主要从事西部少数民族疾病防治、健康教育研究
引用本文:   
杨秀琳, 马宗康, 马霞, 马鑫. 东乡族自治县农村居民传染病健康素养调查[J]. 预防医学, 2023, 35(2): 166-170.
YANG Xiulin, MA Zongkang, MA Xia, MA Xin. Investigation of infectious disease-specific health literacy among rural residents in Dongxiang Autonomous County. Preventive Medicine, 2023, 35(2): 166-170.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2023.02.019      或      http://www.zjyfyxzz.com/CN/Y2023/V35/I2/166
[1] OSBORNE R H,BEAUCHAMP A,BATTERHAM R.Health literacy:a concept with potential to greatly impact the infectious diseases field[J].Int J Infect Dis,2016,43:101-102.
[2] XIAO X,XIAO J,YAO J,et al.The role of resilience and gender in relation to infectious-disease-specific health literacy and anxiety during the COVID-19 pandemic[J].Neuropsychiatr Dis Treat,2020,16:3011-3021.
[3] 东乡县统计局.东乡族自治县第七次全国人口普查公报[EB/OL].[2022-12-22].http://www.dxzzzx.gov.cn/BmXxGk/Content?ItemID=44babb43-35d3-4312-8e9e-af545cdb6cc3.
[4] ZHU L,SUN H,TIAN G,et al.Development and validation of a risk prediction model and nomogram for colon adenocarcinoma based on methylation-driven genes[J].Aging,2021,13(12):16600-16619.
[5] 晋菲斐,田向阳,邸泽青,等.中国居民传染病健康素养量表编制与信效度检验[J].中国公共卫生,2016,32(12):1651-1655.
[6] 杜维婧,程晓丽,柴燕,等.我国3省两类场所农民工传染病健康素养及影响因素分析[J].中国健康教育,2017,33(10):889-893.
[7] 胡佳,田向阳,陈继彬,等.中国3省居民传染病健康素养现状及影响因素分析[J].中国公共卫生,2020,36(2):183-187.
[8] 谢燕,张雪军,谢铮,等.工程建设企业海外员工传染病健康素养现状及影响因素[J].中华疾病控制杂志,2021,25(8):918-922.
[9] 胡秀静,徐越,姚丁铭,等.老年人健康素养与促进策略研究[J].预防医学,2022,34(4):361-365,370.
[10] 徐倩倩,梅秋红,冯宏伟,等.2015—2019年宁波市居民健康素养变化及影响因素分析[J].预防医学,2021,33(1):35-40.
[11] CHERREZ OJEDA I,VANEGAS E,TORRES M,et al.Ecuadorian cancer patients' preference for information and communication technologies:cross-sectional study[J/OL].J Med Internet Res,2018,20(2)[2022-12-22].http://doi.org/10.2196/jmir.8485.
[12] KHOONG E C,LE G M,HOSKOTE M,et al.Health information-seeking behaviors and preferences of a diverse,multilingual urban cohort[J].Med Care,2019,57(Suppl.62):S176-S183.
[13] XIONG Z,ZHANG L,LI Z,et al.Frequency of online health information seeking and types of information sought among the general Chinese population:cross-sectional study[J/OL].J Med Internet Res,2021,23(12)[2022-12-22].http://doi.org/10.2196/30855.
[1] 张丛笑, 郑琳, 沈利明, 黄闽燕, 陈晖, 牛星凯, 宋凯. 西湖区中小学生抑郁症状调查[J]. 预防医学, 2023, 35(3): 196-199.
[2] 高梦阳, 娄鹏威, 马丽, 李惠, 黄玉婷, 王璐, 王凯. 甲状腺乳头状癌中央区淋巴结转移预测模型研究[J]. 预防医学, 2023, 35(3): 229-234.
[3] 余繁荣, 王伟, 闫玉琴, 宋黎桥, 陈莉媛, 苏少晨. 玛曲县藏族小学生患龋的影响因素分析[J]. 预防医学, 2023, 35(3): 239-242.
[4] 倪晶, 马超猛, 项思成, 贾翁萍, 张燕, 徐利. 骨科术后患者排便障碍的影响因素及干预研究进展[J]. 预防医学, 2023, 35(2): 126-129,133.
[5] 王婷婷, 李馨. 育龄期女性卵巢储备功能下降的影响因素分析[J]. 预防医学, 2023, 35(2): 158-161.
[6] 韩俊丽, 刘洋, 高大维, 孙婕, 徐鹏鹏, 龚天麒, 胡颉颖, 曹艳宏, 吕勇. 耶尔森菌病危险因素的病例对照研究[J]. 预防医学, 2023, 35(2): 93-98.
[7] 谢睿, 胡菊莲, 喻喆. 妊娠糖尿病患者生活质量的影响因素研究[J]. 预防医学, 2023, 35(2): 162-165.
[8] 姜佳佳, 李峰, 房冬冬, 尤文君, 王伟伟. 2型糖尿病患者非增殖型糖尿病性视网膜病变的影响因素分析[J]. 预防医学, 2023, 35(1): 17-20.
[9] 常进科, 张俊绘, 赵文芳, 刘爱菊. 孕妇体重自我管理动机水平的影响因素分析[J]. 预防医学, 2022, 34(9): 946-950.
[10] 沈婷, 蔡永环, 张静敏, 胡艺俨, 靳颖, 许俊. 西湖区健康促进学校初中学生电子烟使用调查[J]. 预防医学, 2022, 34(8): 776-781.
[11] 贾娟娟, 林云, 朱国英, 洪霞, 孙炀明, 何海涛, 陈丽艳, 李赟. 嘉兴市中小学生脊柱侧弯调查[J]. 预防医学, 2022, 34(8): 782-787.
[12] 孔琳姝, 李明津, 麻珂, 刘宇. 老年慢性病患者照顾者负担的影响因素分析[J]. 预防医学, 2022, 34(7): 700-704.
[13] 杨丹丹, 姚学成, 张昕涵, 唐梦龄, 王建炳, 金明娟, 陈坤. 中国人群胃癌发病影响因素的Meta分析[J]. 预防医学, 2022, 34(6): 561-570.
[14] 陈剑, 任飞林, 郭聪聪, 林君芬. 接种新冠病毒疫苗意愿的影响因素分析[J]. 预防医学, 2022, 34(6): 611-615.
[15] 熊依杰, 许丽娜, 白丽霞, 周文娟, 刘佳, 吴艳玲. 海淀区青少年电子烟使用现况调查[J]. 预防医学, 2022, 34(5): 471-474.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed