Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (9): 875-880    DOI: 10.19485/j.cnki.issn2096-5087.2025.09.003
  论著 本期目录 | 过刊浏览 | 高级检索 |
社区老年人阿尔茨海默病列线图预测模型构建
章涛, 林君芬, 古雪, 徐乐, 李傅冬, 吴晨
浙江省疾病预防控制中心,浙江 杭州 310051
Construction of a nomogram prediction model for Alzheimer's disease among the elderly in community
ZHANG Tao, LIN Junfen, GU Xue, XU Le, LI Fudong, WU Chen
Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
全文: PDF(887 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 构建社区老年人阿尔茨海默病(AD)列线图预测模型,为AD早期筛查和预防提供依据。方法 基于浙江省老年人健康监测队列,选择基线调查的60~90岁老年人为研究对象,于2015—2016年、2019—2021年开展随访调查,通过问卷调查、体格检查收集社会人口学信息、生活方式、疾病史和腰围等资料;采用简易精神状态检查量表(MMSE)评估认知功能,结合阿尔茨海默病评定量表认知分量表和疾病史诊断AD。按8∶2的比例将研究对象随机纳入训练集和验证集,采用LASSO回归筛选AD预测因子,采用多因素logistic回归模型分析预测因子并建立列线图;采用受试者操作特征(ROC)曲线、决策曲线分析评价预测效果。结果 基线纳入老年人6 988人,其中男性3 438人,占49.20%;女性3 550人,占50.80%。年龄为(68.19±6.63)岁。随访时间MQR)为4.90(3.80)年,新发AD 817例,发病率为11.69%。LASSO回归和多因素logistic回归结果显示,年龄(OR=1.017,95%CI:1.005~1.030)、性别(女,OR=1.820,95%CI:1.533~2.165)、文化程度(小学,OR=0.813,95%CI:0.673~0.980)、体育锻炼(不积极,OR=1.572,95%CI:1.260~1.980)、共餐对象(配偶及子女,OR=0.771,95%CI:0.598~0.995)、基线MMSE得分(OR=0.843,95%CI:0.821~0.866)和腰围(OR=0.981,95%CI:0.973~0.989)是社区老年人AD风险预测因子。建立的列线图验证集ROC曲线下面积为0.740(95%CI:0.698~0.783),灵敏度为0.731,特异度为0.667;决策曲线分析结果显示,风险阈值概率为0.060~0.325时,净收益较高。结论 本研究构建的AD列线图预测模型有较好的区分度和临床实用性,可用于社区老年人AD早期筛查。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章涛
林君芬
古雪
徐乐
李傅冬
吴晨
关键词 阿尔茨海默病老年人列线图    
AbstractObjective To establish a nomogram prediction model for Alzheimer's disease (AD) among the elderly in community, so as to provide the evidence for early screening and prevention of AD. Methods Based on the Zhejiang Healthy Aging Cohort Study, the elderly aged 60-90 years who completed the baseline survey were selected as the study subjects. Follow-up surveys were conducted from 2015 to 2016 and from 2019 to 2021. Sociodemographic characteristics, lifestyle factors, medical history, and waist circumference were collected through questionnaire surveys and physical examinations. Cognitive function was assessed using the Mini-Mental State Examination (MMSE), and a diagnosis of AD was made based on the Alzheimer's Disease Assessment Scale-Cognitive Subscale and medical history. The participants were randomly divided into training and validation sets at 8∶2 ratio. LASSO regression was used to screen for predictive factors. Multivariable logistic regression model was used to analyze predictive factors and construct a nomogram. The model was analyzed and evaluated using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). Results A total of 6 988 elderly were included at baseline, with a mean age of (68.19±6.63) years. There were 3 438 males (49.20%), and 3 550 females (50.80%). The median follow-up duration was 4.90 (interquartile range, 3.80) years, with 817 new cases of AD were identified, yielding an incidence of 11.69%. LASSO regression and multivariable logistic regression showed that age (OR=1.017, 95%CI: 1.005-1.030), gender (female, OR=1.820, 95%CI: 1.533-2.165), educational level (primary school, OR=0.813, 95%CI: 0.673-0.980), physical exercise (not active, OR=1.572, 95%CI: 1.260-1.980), dining companions (spouse and children, OR=0.771, 95%CI: 0.598-0.995), baseline MMSE score (OR=0.843, 95%CI: 0.821-0.866), and waist circumference (OR=0.981, 95%CI: 0.973-0.989) were risk predictors for AD among the elderly in community. The prediction model demonstrated an area under the ROC curve of 0.740 (95%CI: 0.698-0.783) in the validation set, with a sensitivity of 0.731 and a specificity of 0.667. DCA indicated that when the probability threshold was 0.060 to 0.325, the clinical net benefit was relatively high. Conclusion The AD risk prediction model constructed in this study has good discrimination and clinical practicability, can be used for early screening of AD among the elderly in the community.
Key wordsAlzheimer's disease    the elderly    nomogram
收稿日期: 2025-05-29      修回日期: 2025-08-18      出版日期: 2025-09-10
中图分类号:  R749.1  
基金资助:浙江省医药卫生科技计划项目(2024KY896); 浙江省自然科学基金项目(LTGY24H260004); 浙江省疾病预防控制科技计划项目(2025JK009)
作者简介: 章涛,硕士,主管医师,主要从事疾病监测工作
通信作者: 吴晨,E-mail:chenwu@cdc.zj.cn   
引用本文:   
章涛, 林君芬, 古雪, 徐乐, 李傅冬, 吴晨. 社区老年人阿尔茨海默病列线图预测模型构建[J]. 预防医学, 2025, 37(9): 875-880.
ZHANG Tao, LIN Junfen, GU Xue, XU Le, LI Fudong, WU Chen. Construction of a nomogram prediction model for Alzheimer's disease among the elderly in community. Preventive Medicine, 2025, 37(9): 875-880.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.09.003      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I9/875
[1] JIA L F,DU Y F,CHU L,et al.Prevalence,risk factors,and management of dementia and mild cognitive impairment in adults aged 60 years or older in China:a cross-sectional study[J].Lancet Public Health,2020,5(12):661-671.
[2] 王浩,李娜,俞佳男,等. 2003—2017年浙江省阿尔茨海默病发病和死亡趋势分析[J].预防医学,2022,34(3):227-231,239.
WANG H,LI N,YU J N,et al.Trends in incidence and mortality of Alzheimer's disease in Zhejiang Province from 2003 to 2017[J].China Prev Med J,2022,34(3):227-231,239.(in Chinese)
[3] 唐诚,阮伟伟,兰晓莉,等.基于PET的影像组学在阿尔茨海默病评估中的应用进展[J].中国医学影像学杂志,2024,32(5):504-509.
TANG C,RUAN W W,LAN X L,et al.Advancements in the application of PET-based radiomics in the assessment of Alzheimer's disease[J].Chin J Medical Imaging,2024,32(5):504-509.(in Chinese)
[4] PALMQVIST S,TIDEMAN P,CULLEN N,et al.Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures[J].Nat Med,2021,27(6):1034-1042.
[5] JESSEN F,WIESE B,BICKEL H,et al.Prediction of dementia in primary care patients[J].PLoS One,2011,6(2):1-10.
[6] STEPHAN B C M,PAKPAHAN E,SIERVO M,et al.Prediction of dementia risk in low-income and middle-income countries(the 10/66 Study):an independent external validation of existing models[J].Lancet Glob Health,2020,8(4):524-535.
[7] KIVIPELTO M,NGANDU T,LAATIKAINEN T,et al.Risk score for the prediction of dementia risk in 20 years among middle aged people:a longitudinal,population-based study[J].Lancet Neurol,2006,5(9):735-741.
[8] KATZMAN R,ZHANG M,OUANG-YA-QU,et al.A Chinese version of the Mini-Mental State Examination;impact of illiteracy in a Shanghai dementia survey[J].J Clin Epidemiol,1988,41(10):971-978.
[9] ROSEN W G,MOHS R C,DAVIS K L.A new rating scale for Alzheimer's disease[J].Am J Psychiatry,1984,141(11):1356-1364.
[10] CHEN L H,FAN Y H,KAO P Y,et al.Genetic polymorphisms in estrogen metabolic pathway associated with risks of Alzheimer's disease:evidence from a southern Chinese population[J].J Am Geriatr Soc,2017,65(2):332-339.
[11] HU M Y,GAO Y Y,KWOK T C Y,et al.Derivation and validation of the cognitive impairment prediction model in older adults:a national cohort study[J].Front Aging Neurosci,2022,14:1-9.
[12] HU M Y,SHU X H,YU G,et al.A risk prediction model based on machine learning for cognitive impairment among Chinese community-dwelling elderly people with normal cognition:development and validation study[J].J Med Internet Res,2021,23(2):1-11.
[13] ZHOU J H,LYU Y B,MAO C,et al.Development and validation of a nomogram for predicting the 6-year risk of cognitive impairment among Chinese older adults[J].J Am Med Dir Assoc,2020,21(6):864-871.
[14] WANG Z T,FU Y,ZHANG Y R,et al.Modified dementia risk score as a tool for the prediction of dementia:a prospective cohort study of 239 745 participants[J].Transl Psychiatry,2022,12(1):1-8.
[15] 杨红英,袁月荣,李金成,等.宁波市老年人群阿尔茨海默病筛查结果分析[J].预防医学,2023,35(10):849-855.
YANG H Y,YUAN Y R,LI J C,et al.Preliminary screening results of Alzheimer's disease among the elderly in Ningbo City[J].China Prev Med J,2023,35(10):849-855.(in Chinese)
[16] XU Q,ZOU K,DENG Z A,et al.A study of dementia prediction models based on machine learning with survey data of community-dwelling elderly people in China[J].J Alzheimers Dis,2022,89(2):669-679.
[17] NOH H M,HAN J,ROH Y K,et al.Eating alone and cognitive decline in Korean older adults:a 3-year prospective study[J].Ann Geriatr Med Res,2021,25(1):17-24.
[18] YBARRA O,WINKIELMAN P.On-line social interactions and executive functions[J/OL].Front Hum Neurosci,2012,6[2025-08-18].https://doi.org/10.3389/fnhum.2012.00075.
[19] MAKIZAKO H,TSUTSUMIMOTO K,SHIMADA H,et al.Social frailty among community-dwelling older adults:recommended assessments and implications[J].Ann Geriatr Med Res,2018,22(1):3-8.
[20] 周颖,李链,边国林.阿尔茨海默病多模式非药物干预的研究进展[J].预防医学,2024,36(12):1045-1048,1051.
ZHOU Y,LI L,BIAN G L.Multimodal non-pharmacological interventions for Alzheimer's disease:a review[J].China Prev Med J,2024,36(12):1045-1048,1051.(in Chinese)
[21] CHO G J,HWANG S Y,LEE K M,et al.Association between waist circumference and dementia in older persons:a nationwide population-based study[J].Obesity(Silver Spring),2019,27(11):1883-1891.
[22] QIZILBASH N,GREGSON J,JOHNSON M E,et al.BMI and risk of dementia in two million people over two decades:a retrospective cohort study[J].Lancet Diabetes Endocrinol,2015,3(6):431-436.
[1] 董春玲, 王冲, 关添元, 刘玥, 李雪莹, 张玉海. 基于组轨迹模型的老年人膳食多样性与认知功能研究[J]. 预防医学, 2025, 37(9): 865-869.
[2] 杜昌翰, 高琳茜, 卢心雨, 赵渭娟, 李领. 1992—2021年我国老年人群口腔癌疾病负担的年龄-时期-队列分析[J]. 预防医学, 2025, 37(9): 870-874.
[3] 陶桃, 张海芳, 凡鹏飞, 李秋华, 陈晓蕾. 丽水市老年肺结核患者治疗转归的影响因素分析[J]. 预防医学, 2025, 37(9): 892-896,902.
[4] 徐艳平, 闫晓彤, 姚丁铭, 徐越, 张雪海, 孙洁, 徐锦杭. 浙江省中老年人肺炎疫苗接种意愿的影响因素研究[J]. 预防医学, 2025, 37(9): 881-885.
[5] 翟羽佳, 章涛, 古雪, 徐乐, 吴梦娜, 林君芬, 吴晨. 社区老年人认知衰弱现况调查[J]. 预防医学, 2025, 37(8): 762-766,772.
[6] 徐莉, 刘萍, 卞宇旬, 陈圆媛, 李鑫娜, 周乐. 扬州市新报告50岁及以上HIV/AIDS病例抗病毒治疗前耐药分析[J]. 预防医学, 2025, 37(8): 779-782,788.
[7] 王晓宇, 张志平, 董玉颖, 梁杰, 陈强. 老年人带状疱疹疫苗接种意愿的影响因素分析[J]. 预防医学, 2025, 37(8): 809-813.
[8] 孙强, 黄颖, 李小勇, 杨晨迎, 王思嘉. 2014—2023年宁波市老年伤害病例特征分析[J]. 预防医学, 2025, 37(8): 822-826,831.
[9] 何欢, 赵雪, 蔡鹏, 詹小亚, 马蕾. 老年慢性阻塞性肺疾病患者运动恐惧的影响因素研究[J]. 预防医学, 2025, 37(7): 659-663.
[10] 楚楚, 徐红, 蔡波, 韩颖颖, 穆海祥, 郑会燕, 林玲. 中老年人群脑卒中风险预测模型研究[J]. 预防医学, 2025, 37(7): 649-653.
[11] 刘明坤, 张丰香, 韩彩静, 王霞, 陈世坤, 金梅, 孙金月. 2型糖尿病患者周围神经病变风险预测模型研究[J]. 预防医学, 2025, 37(7): 692-696.
[12] 王剑铃, 沈小华, 李婷, 宋维红. 疗休养老年人老年综合评估结果分析[J]. 预防医学, 2025, 37(6): 593-597.
[13] 叶露梦, 郑广勇. 象山县养老机构老年人健康素养调查[J]. 预防医学, 2025, 37(6): 627-631.
[14] 龚亮亮, 戎志东. 10~13岁儿童非自杀性自伤行为风险预测模型研究[J]. 预防医学, 2025, 37(6): 546-550.
[15] 夏敏, 钱瑾瑜, 闫盼盼, 吴茜. 老年人夜间睡眠时长、体力活动与失能的关联研究[J]. 预防医学, 2025, 37(6): 556-561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed