Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (3): 280-284,287    DOI: 10.19485/j.cnki.issn2096-5087.2025.03.014
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
LSTM、SARIMA和SARIMAX模型预测手足口病发病率的效果比较
张小乔, 张筱碟, 赵振希, 谢鹏留, 代敏
昆明市疾病预防控制中心,云南 昆明 650000
Comparison of the prediction effects of LSTM, SARIMA and SARIMAX models on the incidence of hand, foot, and mouth disease
ZHANG Xiaoqiao, ZHANG Xiaodie, ZHAO Zhenxi, XIE Pengliu, DAI Min
Kunming Center for Disease Control and Prevention, Kunming, Yunnan 650000, China
全文: PDF(974 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 比较季节性差分自回归滑动平均(SARIMA)、含外生变量的季节性差分自回归滑动平均(SARIMAX)、长短期记忆神经网络(LSTM)模型预测手足口病发病率的效果。方法 收集2010—2019年昆明市手足口病月发病率资料,采用2010—2018年手足口病月发病率分别建立SARIMA、SARIMAX和LSTM模型,预测2019年1—12月手足口病月发病率;采用均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)比较3种模型预测效果,根据MSE、RMSE、MAE和MAPE最小原则选择最优预测模型。结果 2010—2019年昆明市各月均有手足口病病例报告,发病率在188.27/10万~363.15/10万之间波动,发病呈隔年高发双峰分布。LSTM模型在训练集和测试集中的4项评价指标较小,MSE分别为63.182和102.745,RMSE分别为7.949和10.136,MAE分别为6.535和7.620,MAPE分别为46.726%和31.138%,预测效果较好;其次为SARIMA模型;SARIMAX模型的预测效果相对较差。结论 LSTM模型预测手足口病发病率的效果优于SARIMA和SARIMAX模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张小乔
张筱碟
赵振希
谢鹏留
代敏
关键词 手足口病发病率季节性差分自回归滑动平均模型含外生变量的季节性差分自回归滑动平均模型长短期记忆神经网络模型预测    
AbstractObjective To compare the effects of seasonal autoregressive integrated moving average (SARIMA) , seasonal autoregressive integrated moving average with exogenous regressors (SARIMAX) and long short-term memory neural network (LSTM) models in predicting the incidence of hand, foot, and mouth disease (HFMD). Methods Monthly incidence data of HFMD in Kunming City from 2010 to 2019 were collected. SARIMA, SARIMAX and LSTM models were established using the monthly incidence of HFMD from 2010 to 2018 to predict the monthly incidence of HFMD from January to December 2019. The prediction performance of the three models was compared using mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). The optimal prediction model was selected based on the principle of minimizing MSE, RMSE, MAE and MAPE. Results The HFMD cases were reported every month in Kunming City from 2010 to 2019, with the incidence fluctuating between 188.27/105 and 363.15/105. The disease exhibited a biennial high-incidence bimodal distribution. Among the four evaluation indicators for the training and testing sets, the LSTM model had the smaller values: MSE was 63.182 and 102.745, RMSE was 7.949 and 10.136, MAE was 6.535 and 7.620, and MAPE was 46.726% and 31.138%. The LSTM model performed the better, followed by the SARIMA model, while the SARIMAX model had the relatively poorest performance. Conclusion The LSTM model outperforms the SARIMA and SARIMAX models in predicting the incidence of HFMD.
Key wordshand foot and mouth disease    incidence    seasonal autoregressive integrated moving average model    seasonal autoregressive integrated moving average model with exogenous regressors    long short-term memory neural network model    prediction
收稿日期: 2024-10-18      修回日期: 2025-02-17      出版日期: 2025-03-10
中图分类号:  R725.1  
基金资助:昆明市卫生健康委员会卫生科研课题(2023-12-05-003)
作者简介: 张小乔,硕士,医师,主要从事疾病预防控制工作
通信作者: 代敏,E-mail:dede_dm@163.com   
引用本文:   
张小乔, 张筱碟, 赵振希, 谢鹏留, 代敏. LSTM、SARIMA和SARIMAX模型预测手足口病发病率的效果比较[J]. 预防医学, 2025, 37(3): 280-284,287.
ZHANG Xiaoqiao, ZHANG Xiaodie, ZHAO Zhenxi, XIE Pengliu, DAI Min. Comparison of the prediction effects of LSTM, SARIMA and SARIMAX models on the incidence of hand, foot, and mouth disease. Preventive Medicine, 2025, 37(3): 280-284,287.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.03.014      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I3/280
[1] 庞孟涛,李傅冬,林君芬,等.2016—2019年浙江省手足口病流行特征[J].预防医学,2022,34(3):307-310.
PANG M T,LI F D,LIN J F,et al.Epidemiological characteristics of hand,foot and mouth disease in Zhejiang Province from 2016 to 2019[J].China Prev Med J,2022,34(3):307-310.(in Chinese)
[2] 杨溪,曹亿会,寸建萍,等.2015—2019年云南省手足口病流行及病原学特征分析[J].职业卫生与病伤,2022,37(5):278-282.
YANG X,CAO Y H,CUN J P,et al.Epidemiological and etiological characteristics of hand-foot-mouth disease in Yunnan Province from 2015 to 2019[J].Occup Health Damage,2022,37(5):278-282.(in Chinese)
[3] YU Y,SI X S,HU C H,et al.A review of recurrent neural networks:LSTM cells and network architectures[J].Neural Comput,2019,31(7):1235-1270.
[4] 刘天,吴杨,陈琦,等.SARIMA模型与prophet模型对手足口病周发病率拟合及预测效果比较[J].预防医学情报杂志,2022,38(10):1346-1350.
LIU T,WU Y,CHEN Q,et al.Comparison of SARIMA model and prophet model on the weekly incidence of hand,foot and mouth disease[J].J Prev Med Inf,2022,38(10):1346-1350.(in Chinese)
[5] 杨溪,姜黎黎,曹亿会,等.云南省2009—2019年手足口病流行特征及病原学特征分析[J].现代预防医学,2021,48(5):789-792.
YANG X,JIANG L L,CAO Y H,et al.Epidemiological and etiological characteristics of hand-foot-mouth disease in Yunnan Province,2009-2019[J].Mod Prev Med,2021,48(5):789-792.(in Chinese)
[6] 聂陶然. 手足口病重症及死亡病例流行特征及病原谱的研究[D].北京:中国疾病预防控制中心,2020.
NIE T R.Study on the epidemiological characteristics and etiological spectrum of severe and fatal cases of hand-foot-mouth disease[D].Beijing:Chinese Center for Disease Control and Prevention,2020.(in Chinese)
[7] 王佳琪,王松旺,赵自雄,等.2010—2019年中国南亚热带地区气象因素对手足口病发病的影响[J].疾病监测,2024,39(6):705-710.
WANG J Q,WANG S W,ZHAO Z X,et al.Influence of meteorological factors on incidence of hand,foot and mouth disease in subtropic area in China,2010-2019[J].Dis Surveill,2024,39(6):705-710.(in Chinese)
[8] 康殿巨,斯郎格玛,程秀伟,等.2015—2020年四川省手足口病流行病学特征分析[J].实用预防医学,2022,29(8):920-923.
KANG D J,SILANG G M,CHENG X W,et al.Epidemiological characteristics of hand-foot-mouth disease in Sichuan Province,2015-2020[J].Pract Prev Med,2022,29(8):920-923.(in Chinese)
[9] 杨琳,李勤,赵寒,等.2008—2018年重庆市肠道传染病流行特征分析[J].实用预防医学,2020,27(3):327-329.
YANG L,LI Q,ZHAO H,et al.Analysis of epidemiological characteristics of intestinal infectious diseases in Chongqing from 2008 to 2018[J].Pract Prev Med,2020,27(3):327-329.(in Chinese)
[10] 孙进,刘今,孙明丽,等.结合气象与经济因素应用长短期记忆网络模型预测郑州市手足口病的发病趋势[J].中国医科大学学报,2023,52(6):520-526.
SUN J,LIU J,SUN M L,et al.Using long short term memory model combined with economic and meteorological factors to predict incidence trends of hand-foot-mouth disease in Zhengzhou City[J].J China Med Univ,2023,52(6):520-526.(in Chinese)
[1] 沈敏, 郁智慧, 朱爱韬. 1992—2021年中国慢性阻塞性肺疾病发病和死亡的年龄-时期-队列分析[J]. 预防医学, 2025, 37(2): 113-117.
[2] 潘祥, 童莺歌, 李怡萱, 倪珂, 程雯倩, 辛蒙雨, 胡钰滢. 机器学习方法构建健康素养预测模型的范围综述[J]. 预防医学, 2025, 37(2): 148-153.
[3] 赵琳, 蒋龙艳, 徐斌, 唐咸艳. 南宁市五种主要恶性肿瘤发病率分析[J]. 预防医学, 2025, 37(2): 135-138.
[4] 裘凤黔, 赵俊峰, 陈玮华, 杜娟, 纪云芳, 高淑娜, 蒙洁, 何丽华, 陈博, 张艳. 2002—2019年黄浦区肺癌发病和死亡趋势分析[J]. 预防医学, 2025, 37(2): 143-147.
[5] 周国营, 邢丽丽, 苏颖, 刘宏杰, 刘赫, 王迪, 薛锦峰, 戴威, 汪静, 杨兴华. 35~75岁居民心血管病高危风险预测模型研究[J]. 预防医学, 2025, 37(1): 12-16.
[6] 章群, 王永, 陈洁平, 包凯芳, 冯玥溢, 王小丽. 2011—2023年宁波市前列腺癌发病和死亡趋势分析[J]. 预防医学, 2025, 37(1): 46-50.
[7] 赵棋锋, 王吉玲, 马岩, 方益荣. 2005—2023年绍兴市布鲁氏菌病流行特征分析[J]. 预防医学, 2024, 36(9): 806-808,812.
[8] 薛喆, 王思嘉, 卢兰兰, 王永, 龚清海, 沈鹏. 2011—2021年宁波市儿童青少年糖尿病发病趋势[J]. 预防医学, 2024, 36(9): 750-754.
[9] 陈江, 齐小娟, 陈莉莉, 鲁琴宝, 王绩凯, 周标. 浙江省非伤寒沙门菌和副溶血性弧菌急性胃肠炎疾病负担[J]. 预防医学, 2024, 36(9): 755-759.
[10] 郑帅印, 李丽丹, 陈佩弟, 谢尔瓦妮古丽·阿卜力米提, 李砥. 2型糖尿病合并非酒精性脂肪肝的预测模型研究[J]. 预防医学, 2024, 36(9): 741-745,749.
[11] 周国营, 邢丽丽, 苏颖, 刘宏杰, 刘赫, 王迪, 薛锦峰, 戴威, 汪静, 杨兴华. 2007—2022年东城区心血管疾病发病趋势[J]. 预防医学, 2024, 36(9): 813-816.
[12] 汪琼, 陈丹青, 魏伊丽, 钱芳芳. 早产风险预测模型研究[J]. 预防医学, 2024, 36(8): 663-668.
[13] 林凯, 刘雅文, 罗诗丽, 李衡, 李雪梅. 2008—2022年盐田区性传播疾病年龄、时期、队列分析[J]. 预防医学, 2024, 36(7): 584-589.
[14] 刘艳, 沈建勇, 王雨达, 刘光涛, 孙秀秀, 张子喆. 2005—2023年湖州市法定传染病发病趋势分析[J]. 预防医学, 2024, 36(7): 566-570.
[15] 陈佩弟, 肖婷婷, 李新秀, 郑帅印, 黄芸. 2016—2023年乌鲁木齐市大气PM2.5污染分析及建立预测模型[J]. 预防医学, 2024, 36(6): 510-513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed