Please wait a minute...
文章检索
预防医学  2024, Vol. 36 Issue (6): 491-495    DOI: 10.19485/j.cnki.issn2096-5087.2024.06.008
  综述 本期目录 | 过刊浏览 | 高级检索 |
慢性病共病患者预后预测模型的范围综述
贾铭1, 赵华1, 彭菊意1,2, 刘星宇1, 刘宇丹1, 侯嘉宁1, 杨佳乐1
1.山西中医药大学护理学院,山西 晋中 030619;
2.山西白求恩医院,山西 太原 030032
Prognostic prediction models for patients with comorbidity of chronic diseases: a scoping review
JIA Ming1, ZHAO Hua1, PENG Juyi1,2, LIU Xingyu1, LIU Yudan1, HOU Jianing1, YANG Jiale1
1. School of Nursing, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China;
2. Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, China
全文: PDF(791 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 对慢性病共病患者预后预测模型进行范围综述,了解该类模型的建模方法、预测因子和预测效能,为慢性病共病患者预后评估提供参考。方法 检索中国生物医学文献数据库、中国知网、万方数据知识服务平台、维普中文科技期刊数据库、PubMed、Embase、Cochrane Library和Web of Science,收集建库至2023年11月1日发表的关于慢性病共病患者预后预测模型的文献,采用预测模型的偏倚风险评估工具进行文献质量评价,对建模方法、预测因子和预测效能等进行综述。结果 初期检索到2 130篇文献,最终纳入9篇文献,总体偏倚风险均为高风险。涉及13种模型,3种采用机器学习法建模,10种采用logistic回归法建模。4种模型的预测结局为死亡,预测因子主要为年龄、性别、体质指数(BMI)、Barthel指数和压疮;9种模型的预测结局为再入院,预测因子主要为年龄、BMI、住院次数、住院时间和住院费用。11种模型报告了受试者操作特征曲线下面积,范围为0.663~0.991 6;2种报告了一致性指数,范围为0.64~0.70。8种模型进行了内部验证;1种进行了外部验证;4种未报告验证方法。结论 本文分析的慢性病共病患者预后预测模型主要采用logistic回归和机器学习法建模,预测因子以日常护理评估指标为主,模型总体预测效能较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾铭
赵华
彭菊意
刘星宇
刘宇丹
侯嘉宁
杨佳乐
关键词 慢性病共病预后预测模型范围综述    
AbstractObjective To conduct a scoping review on prognostic prediction models for patients with comorbidity of chronic diseases, and understand modeling methods, predictive factors and predictive effect of the models, so as to provide the reference for prognostic evaluation on patients with comorbidity of chronic diseases. Methods Literature on prognostic prediction models for patients with comorbidity of chronic diseases was collected through SinoMed, CNKI, Wanfang Data, VIP, PubMed, Embase, Cochrane Library and Web of Science published from the time of their establishment to November 1, 2023. The quality of literature was assessed using prediction model risk of bias assessment tool (PROBAST), then modeling methods, predictive factors and predictive effects were reviewed. Results Totally 2 130 publications were retrieved, and nine publications were finally enrolled, with an overall high risk of bias. Thirteen models were involved, with three established using machine learning methods and ten established using logistic regression. The prediction results of four models were death, with main predictive factors being age, gender, body mass index (BMI), Barthel index and pressure ulcers; the prediction results of nine models were rehospitalization, with main predictive factors being age, BMI, hospitalization frequency, duration of hospital stay and hospitalization costs. Eleven models reported the area under the receiver operating characteristic curve (AUC), ranging from 0.663 to 0.991 6; two models reported the C-index, ranging from 0.64 to 0.70. Eight models performed internal validation, one model performed external validation, and four models did not reported verification methods. Conclusions The prognostic prediction models for patients with comorbidity of chronic diseases are established by logistic regression and machine learning methods with common nursing evaluation indicators, and perform well. Laboratory indicators should be considered to add in the models to further improve the predictive effects.
Key wordscomorbidity of chronic diseases    prognosis    prediction model    scoping review
收稿日期: 2024-01-22      修回日期: 2024-03-21      出版日期: 2024-06-10
中图分类号:  R181.3  
基金资助:山西省社会科学界联合会2023至2024年度重点课题研究项目(SSKLZDKT2023117); 山西省教育厅2023年度研究生创新创新计划项目(2023SJ272); 山西省教育厅2023 年山西省高等学校一般性教学改革创新立项项目(J20230894); 山西中医药大学2023年度科技创新能力培育计划软科学研究专项资助项目(2023PY-RKX-03); 山西中医药大学研究生教育改革及创新创业项目(2023CX050)
作者简介: 贾铭,硕士研究生在读,护理学专业
通信作者: 赵华,E-mail:zhshun7788@126.com   
引用本文:   
贾铭, 赵华, 彭菊意, 刘星宇, 刘宇丹, 侯嘉宁, 杨佳乐. 慢性病共病患者预后预测模型的范围综述[J]. 预防医学, 2024, 36(6): 491-495.
JIA Ming, ZHAO Hua, PENG Juyi, LIU Xingyu, LIU Yudan, HOU Jianing, YANG Jiale. Prognostic prediction models for patients with comorbidity of chronic diseases: a scoping review. Preventive Medicine, 2024, 36(6): 491-495.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2024.06.008      或      http://www.zjyfyxzz.com/CN/Y2024/V36/I6/491
[1] 李林瑾,肖丽勤,张丹.基于健康生态学模型的广东省老年共病患者患慢性病数量影响因素研究[J].中国全科医学,2024,27(2):208-216.
[2] ZOU S,WANG Z,BHURA M,et al.Association of multimorbidity of non-communicable diseases with mortality:a 10-year prospective study of 0.5 million Chinese adults[J].Public Health,2022,205:63-71.
[3] 贾铭,彭菊意,刘星宇,等.心血管代谢性共病危险因素的Meta分析[J].预防医学,2023,35(9):790-795.
[4] 张家佳,陈小玉,廖娟,等.重庆市老年慢性病共病患者跌倒调查[J].预防医学,2023,35(12):1062-1066.
[5] KATE R J,PEARCE N,MAZUMDAR D,et al.A continual prediction model for inpatient acute kidney injury[J/OL].Comput Biol Med,2020,116[2024-03-21].https://doi.org/10.1016/j.compbiomed.2019.103580.
[6] ALONSO-MORÁN E,NUNO-SOLINIS R,ONDER G,et al.Multimorbidity in risk stratification tools to predict negative outcomes in adult population[J].Eur J Intern Med,2015,26(3):182-189.
[7] ARKSEY H,O'MALLEY L.Scoping studies:towards a methodological framework[J].Int J Soc Res Method,2005,8(1):19-32.
[8] 刘贵浩,薛允莲,王晟,等.某医院老年住院患者疾病累及系统数及死亡风险评估[J].中国医院统计,2021,28(2):149-152.
[9] BRETOS-AZCONA P E,IBARROLA GUILLÉN C,SÁNCHEZ-IRISO E,et al.Multisystem chronic illness prognostication in non-oncologic integrated care[J/OL].BMJ Support Palliat Care,2022,12[2024-03-21].https://doi.org/10.1136/bmjspcare-2019-002055.
[10] GASTENS V,CHIOLERO A,ANKER D,et al.Development and validation of a new prognostic index for mortality risk in multimorbid adults[J/OL].PLoS One,2022,17[2024-03-21].https://doi.org/10.1371/journal.pone.0271923.
[11] 陈梦蝶. 数据驱动的慢性疾病风险因素关联分析及再入院预测研究[D].成都:电子科技大学,2020.
[12] KHANNA S,ROLLS D A,BOYLE J,et al.A risk stratification tool for hospitalisation in Australia using primary care data[J/OL].Sci Rep,2019,9[2024-03-21].https://doi.org/10.1038/s41598-019-41383-y.
[13] MÜLLER B S,UHLMANN L,IHLE P,et al.Development and internal validation of prognostic models to predict negative health outcomes in older patients with multimorbidity and polypharmacy in general practice[J/OL].BMJ Open,2020,10[2024-03-21].https://doi.org/10.1136/bmjopen-2020-039747.
[14] LE LAY J,ALFONSO-LIZARAZO E,AUGUSTO V,et al.Prediction of hospital readmission of multimorbid patients using machine learning models[J/OL].PloS One,2022,17[2024-03-21].https://doi.org/10.1371/journal.pone.0279433.
[15] GONZÁLEZ-COLOM R,HERRANZ C,VELA E,et al.Prevention of unplanned hospital admissions in multimorbid patients using computational modeling:observational retrospective cohort study[J/OL].J Med Internet Res,2023,25[2024-03-21].https://doi.org/10.2196/40846.
[16] SNIJDERS B M G,KEMPEN T G H,AUBERT C E,et al.Drug related readmissions in older hospitalized adults:external validation and updating of OPERAM DRA prediction tool[J].J Am Geriatr Soc,2023,71(12):3848-3856.
[17] 李静,侯云霞,强万敏.癌症患者非计划性再入院风险预测模型的范围综述[J].中华护理杂志,2022,57(9):1079-1087.
[18] HAN K,JIA W P,WANG S S,et al.Synergistic impact of body mass index and cognitive function on all-cause mortality in older adults:a nationwide longitudinal study[J/OL].Front Endocrinol(Lausanne),2021,12[2024-03-21].https://doi.org/10.3389/fendo.2021.620261.
[19] 贾盈盈,崔念奇,胡欢婷,等.中国心力衰竭患者死亡风险预测模型的系统评价[J].中国循环杂志,2023,38(10):1036-1041.
[1] 沈益妹, 章奇, 朱新凤, 丁晶莹, 俞梅华. 湖州市血压控制未达标高血压患者慢性病共病及影响因素分析[J]. 预防医学, 2023, 35(6): 541-545,550.
[2] 靳明英, 沈蔚, 陈俊斐, 冯玲芳, 应士波, 夏海玲, 陈钧强, 陈祎秋, 蒋兆强, 楼建林. 长链非编码RNA JPX诊断间皮瘤及预后的价值研究[J]. 预防医学, 2023, 35(3): 235-238,242.
[3] 张家佳, 陈小玉, 廖娟, 陈娇, 赵小刚. 重庆市老年慢性病共病患者跌倒调查[J]. 预防医学, 2023, 35(12): 1062-1066.
[4] 文彩荷, 俞黎铭, 柴芸. 重度窒息新生儿55例预后分析[J]. 预防医学, 2023, 35(10): 899-902.
[5] 郁小红, 钱棪梅, 周晨洁, 马越, 唐艳超, 邹玲莉. 应用TreeNet算法建立原发性高血压早期预测模型[J]. 预防医学, 2022, 34(9): 923-927.
[6] 何亚盛, 张红霞, 倪银, 朱越燕, 彭敏, 杨丹红. 急诊重症监护病房住院患者医院感染的预测模型研究[J]. 预防医学, 2022, 34(9): 919-922.
[7] 杨茹莱, 沈亚平, 陈迟, 周莹, 徐艳华, 舒强. 2009—2021年浙江省新生儿遗传代谢病基因型分析[J]. 预防医学, 2022, 34(8): 760-764.
[8] 王迎丹, 高春洁, 王蕾. 5种时间序列模型预测肺结核发病比较[J]. 预防医学, 2022, 34(12): 1194-1200.
[9] 吴亚婷, 刘桂平, 刘和平. 四价流感疫苗对老年不稳定型心绞痛患者预后的影响[J]. 预防医学, 2020, 32(5): 497-500.
[10] 潘静静, 金湘东, 马红霞, 卫海燕, 王若琳, 苏佳, 黄学勇. 重症手足口病儿童预后影响因素分析[J]. 预防医学, 2020, 32(2): 162-164.
[11] 徐小仙, 张筱婧, 周建松, 楼寒梅. 211例宫颈腺癌治疗患者生存预后影响因素分析[J]. 预防医学, 2017, 29(4): 360-362.
[12] 武小娟,孟舰,李彦国,李川,刘红新,侯运辉. 急性有机磷农药中毒预后影响因素及其预测价值研究[J]. 预防医学, 2017, 29(12): 1227-1230.
[13] 王晓霞, 王红阳. 糖尿病并发肺结核老年患者健康素养与治疗效果的关系[J]. 预防医学, 2017, 29(1): 28-31,35.
[14] 李小辉,章杰,郭君宾,颜情贤,叶舒婷,范秀秀,梅琴,林浩,李前文. 内质网蛋白29在乳腺癌中的表达及意义[J]. 预防医学, 2016, 28(7): 731-734.
[15] 葛明珠, 张珂, 潘钰. 脐动脉血流检测在延期妊娠监测胎盘功能中的作用[J]. 预防医学, 2016, 28(11): 1165-1167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed