Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (12): 1230-1234    DOI: 10.19485/j.cnki.issn2096-5087.2022.12.008
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于常规体检指标的2型糖尿病风险预测研究进展
苏银霞1, 卢耀勤2, 田翔华1, 李莉1 综述, 姚华3 审校
1.新疆医科大学医学工程技术学院,新疆 乌鲁木齐 830000;
2.乌鲁木齐市疾病预防控制中心,新疆 乌鲁木齐 830000;
3.新疆医科大学,新疆 乌鲁木齐 830000
Research progress on risk prediction of type 2 diabetes mellitus based on routine physical examination indicators
SU Yinxia1, LU Yaoqin2, TIAN Xianghua1, LI Li1, YAO Hua3
1. School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, Xinjiang 830000, China;
2. Urumqi Center for Disease Control and Prevention, Urumqi, Xinjiang 830000, China;
3. Xinjiang Medical University, Urumqi, Xinjiang 830000, China
全文: PDF(797 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 2型糖尿病(T2DM)具有病程长,起病隐匿的特点,风险预测模型在疾病早期发现、治疗,提出针对性干预措施方面具有较大潜能。针对T2DM的风险预测模型研究逐年增多,为实现T2DM精准三级预防奠定了基础。但多数研究存在样本量小、变量复杂、应用推广困难等问题。本文对基于经济、易得的常规体检指标建立的T2DM风险预测模型研究进行综述,以便进一步探索易于应用和推广的T2DM风险预测模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏银霞
卢耀勤
田翔华
李莉
姚华
关键词 2型糖尿病常规体检风险预测健康大数据电子健康档案    
Abstract:Type 2 diabetes mellitus (T2DM) is characterized by long duration of disease and latent onset. Risk prediction models have shown potential for f early diagnosis and early treatment of diseases and formulation of targeted interventions. There is an increase in researches on risk prediction models for T2DM during the recent years, which provides the basis for precision tertiary prevention of T2DM; however, most studies suffer from problems of small sample size, complicated variables and difficulty in extensive applications. This review summarizes the risk prediction models for T2DM based on economic and easily available routine physical examination indicators, so as to provide insights into further studies on easy-to-perform and -popularize risk prediction models for T2DM.
Key wordstype 2 diabetes mellitus    routine physical examination    risk prediction    health big data    electronic health records
收稿日期: 2022-08-04      修回日期: 2022-10-25      出版日期: 2022-12-10
中图分类号:  R587.1  
基金资助:国家自然科学基金(81960608)
通信作者: 姚华,E-mail:yaohua01@sina.com   
作者简介: 苏银霞,博士研究生在读
引用本文:   
苏银霞, 卢耀勤, 田翔华, 李莉, 姚华. 基于常规体检指标的2型糖尿病风险预测研究进展[J]. 预防医学, 2022, 34(12): 1230-1234.
SU Yinxia, LU Yaoqin, TIAN Xianghua, LI Li, YAO Hua. Research progress on risk prediction of type 2 diabetes mellitus based on routine physical examination indicators. Preventive Medicine, 2022, 34(12): 1230-1234.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.12.008      或      http://www.zjyfyxzz.com/CN/Y2022/V34/I12/1230
[1] SUN H,SAEEDI P,KARURANGA S,et al.IDF diabetes atlas:global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL].Diabetes Res Clin Pract,2022,183(2021-12-05)[2022-10-25].http://doi.org/10.1016/j.diabres.2021.109119.
[2] WANG L,PENG W,ZHAO Z,et al.Prevalence and treatment of diabetes in China,2013-2018[J].JAMA,2021,326(24):2498-2506.
[3] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)[J].中华糖尿病杂志,2021,13(4):315-409.
Chinese Diabetic Society.China guidelines for the prevention and treatment of type 2 diabetes(2020 edition)[J].Chin J Diabetes,2021:13(4):315-409.
[4] 孙霞,朱艳,郑鹏,等.超重肥胖和2型糖尿病对瘦素、内脂素的影响研究[J].预防医学,2022,34(6):581-585.
SUN X,ZHU Y,ZHENG P,et al.Effects of overweight/obesity and type 2 diabetes mellitus on leptin and visfatin levels[J].Prev Med,2022,34(6):581-585.
[5] 郭立新. 2021年糖尿病领域年度重大进展回顾[J].中华糖尿病杂志,2022,14(1):1-8.
GUO L X.2021 annual review of major progress in diabetes[J].Chin J Diabetes,2022,14(1):1-8.
[6] 陶立元,刘珏,曾琳,等.针对个体的预后或诊断多因素预测模型报告规范(TRIPOD)解读[J].中华医学杂志,2018,98(44):3556-3560.
TAO L Y,LIU J,ZENG L,et al.Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis[J].Chin J Med,2018,98(44):3556-3560.
[7] STERN M P,WILLIAMS K,HAFFNER S M.Identification of persons at high risk for type 2 diabetes mellitus:do we need the oral glucose tolerance test?[J].Ann Intern Med,2002,136(8):575-581.
[8] LORENZO C,OKOLOISE M,WILLIAMS K,et al.The metabolic syndrome as predictor of type 2 diabetes:the San Antonio heart study[J].Diabetes Care,2003,26(11):3153-3159.
[9] HIRAI H,ASAHI K,YAMAGUCHI S,et al.New risk prediction model of coronary heart disease in participants with and without diabetes:assessments of the Framingham risk and Suita scores in 3-year longitudinal database in a Japanese population[J/OL].Sci Rep,2019,9(2019-02-26)[2022-10-25].http://doi.org/10.1038/s41598-019-39049-w.
[10] MUSEEDI A S,ALSHAMI A,DOUEDI S,et al.Predictability of inpatient mortality of different comorbidities in both types of acute decompensated heart failure:analysis of national inpatient sample[J].Cardiol Res,2021,12(1):29-36.
[11] DOMINGUEZ-RODRIGUEZ A,ABREU-GONZALEZ P,PICCOLO R,et al.Melatonin is associated with reverse remodeling after cardiac resynchronization therapy in patients with heart failure and ventricular dyssynchrony[J].Int J Cardiol,2016,221:359-363.
[12] ABBAS H T,ALIC L,ERRAGUNTLA M,et al.Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test[J/OL].PLoS One,2019,14(2019-12-11)[2022-10-25].http://doi.org/10.1371/journal.pone.0219636.
[13] ALBARQOUNI L,DOUST J A,MAGLIANO D,et al.External validation and comparison of four cardiovascular risk prediction models with data from the Australian diabetes,obesity and lifestyle study[J].Med J Aust,2019,210(4):161-167.
[14] WU X,YU Z,SU W,et al.Low levels of ApoA1 improve risk prediction of type 2 diabetes mellitus[J].J Clin Lipidol,2017,11(2):362-368.
[15] CHIA Y C,GRAY S Y,CHING S M,et al.Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population:a retrospective cohort study[J/OL].BMJ Open,2015,5(2015-05-19)[2022-10-25].http://doi.org/10.1136/bmjopen-2014-007324.
[16] LOTFALIANY M,HADAEGH F,MANSOURNIA M A,et al.Performance of stepwise screening methods in identifying individuals at high risk of type 2 diabetes in an Iranian population[J].Int J Health Policy Manag,2021,11(8):1391-1400.
[17] CALVO-HUEROS J I,CAÑÓN-BARROSO L,MORALES-GABARDINO J A,et al.Cardiovascular risk and validation of cardiovascular risk prediction functions in a cohort of patients with type 2 diabetes followed for 10 years in Badajoz(Spain):an observational study[J].Prim Care Diabetes,2021,15(1):115-120.
[18] ZHANG X L,WAN G,YUAN M X,et al.Improved Framingham risk scores of patients with type 2 diabetes mellitus in the Beijing community:a 10-year prospective study of the effects of multifactorial interventions on cardiovascular risk factors(the Beijing Communities Diabetes Study 22)[J].Diabetes Ther,2020,11(4):885-903.
[19] YEW S Q,CHIA Y C,THEODORAKIS M.Assessing 10-year cardiovascular disease risk in malaysians with type 2 diabetes mellitus:framingham cardiovascular versus United Kingdom Prospective Diabetes Study equations[J].Asia Pac J Public Health,2019,31(7):622-632.
[20] OOKA T,JOHNO H,NAKAMOTO K,et al.Random forest approach for determining risk prediction and predictive factors of type 2 diabetes:large-scale health check-up data in Japan[J].BMJ Nutr Prev Health,2021,4(1):140-148.
[21] DE SILVA K,LEE W K,FORBES A,et al.Use and performance of machine learning models for type 2 diabetes prediction in community settings:a systematic review and meta-analysis[J/OL].Int J Med Inform,2020,143(2020-09-07)[2022-10-25].http://doi.org/10.1016/j.ijmedinf.2020.104268.
[22] YANG Y F,LI T C,LI C I,et al.Visit-to-visit glucose variability predicts the development of end-stage renal disease in type 2 diabetes:10-year follow-up of Taiwan diabetes study[J/OL].Medicine,2015,94(2015-11-06)[2022-10-25].http://doi.org/10.1097/md.0000000000001804.
[23] WU B,NIU Z,HU F.Study on risk factors of peripheral neuropathy in type 2 diabetes mellitus and establishment of prediction model[J].Diabetes Metab J,2021,45(4):526-538.
[24] 马君,查晓娟,朱欣颖,等.基于大样本的2型糖尿病Nomogram预测模型构建[J].沈阳医学院学报,2018,20(3):197-200,206.
MA J,ZHA X J,ZHU X Y,et al.Nomogram prediction model of type 2 diabetes mellitus based on large samples[J].J Shenyang Med Coll,2018,20(3):197-200,206.
[25] 冀伟. 基于数据挖掘的2型糖尿病患病风险预测模型研究[D]北京:北京工业大学,2019.
JI W.Research on predictive model of type 2 diabetes risk based on data mining[D].Beijing:Beijing University of Technology,2019.
[26] 冯沁祺,彭博雅,李雅儒,等.基于机器学习的2型糖尿病视网膜病变预测模型研究[J].中国中医药信息杂志,2021,28(6):22-28.
FENG Q Q,PENG B Y,LI Y R,et al.Study on prediction model of type 2 diabetic retinopathy based on machine learning[J].Chin J Inf Tradit Chin Med,2021,28(6):22-28.
[27] SU Y,LU Y,LI W,et al.Prevalence and correlation of metabolic syndrome:a cross-sectional study of nearly 10 million multi-ethnic Chinese adults[J].Diabetes Metab Syndr Obes,2020,13:4869-4883.
[28] ARTZI N S,SHILO S,HADAR E,et al.Prediction of gestational diabetes based on nationwide electronic health records[J].Nat Med,2020,26(1):71-76.
[29] LOU J,WANG Y,LI L,et al.Learning latent heterogeneity for type 2 diabetes patients using longitudinal health markers in electronic health records[J].Stat Med,2021,40(8):1930-1946.
[30] WEINER M,DEXTER P R,HEITHOFF K,et al.Identifying and characterizing a chronic cough cohort through electronic health records[J].Chest,2021,159(6):2346-2355.
[31] BERNARDINI M,ROMEO L,MISERICORDIA P,et al.Discovering the type 2 diabetes in electronic health records using the sparse balanced support vector machine[J].IEEE J Biomed Health Inform,2020,24(1):235-246.
[32] MISRA-HEBERT A D,MILINOVICH A,ZAJICHEK A,et al.Natural language processing improves detection of nonsevere hypoglycemia in medical records versus coding alone in patients with type 2 diabetes but does not improve prediction of severe hypoglycemia events:an analysis using the electronic medical record in a large health system[J].Diabetes Care,2020,43(8):1937-1940.
[33] MENG R,SOPER B,LEE H K H,et al.Nonstationary multivariate Gaussian processes for electronic health records[J/OL].J Biomed Inform,2021,117(2021-02-19)[2022-10-25].http://doi.org/10.1016/j.jbi.2021.103698.
[34] YOUNG J B,GAUTHIER-LOISELLE M,BAILEY R A,et al.Development of predictive risk models for major adverse cardiovascular events among patients with type 2 diabetes mellitus using health insurance claims data[J/OL].Cardiovasc Diabetol,2018,17(2018-08-24)[2022-10-25].http://doi.org/10.1186/s12933-018-0759-z.
[35] COSTA O S,O'DONNELL B,VARDAR B,et al.Kidney,limb and ophthalmic complications,and death in patients with nonvalvular atrial fibrillation and type 2 diabetes prescribed rivaroxaban or warfarin:an electronic health record analysis[J].Curr Med Res Opin,2021,37(9):1493-1500.
[36] KREFT D,MCGUINNESS M B,DOBLHAMMER G,et al.Diabetic retinopathy screening in incident diabetes mellitus type 2 in Germany between 2004 and 2013-a prospective cohort study based on health claims data[J/OL].PLoS One,2018,13(2018-04-05)[2022-10-25].http://doi.org/10.1371/journal.pone.0195426.
[37] ZEMEDIKUN D T,CHANDAN J S,RAINDI D,et al.Burden of chronic diseases associated with periodontal diseases:a retrospective cohort study using UK primary care data[J/OL].BMJ Open.,2021,11(2021-11-19)[2022-10-25].http://doi.org/10.1136/bmjopen-2020-048296.
[38] MCGURNAGHAN S J,WEIR A,BISHOP J,et al.Risks of and risk factors for COVID-19 disease in people with diabetes:a cohort study of the total population of Scotland[J].Lancet Diabetes Endocrinol,2021,9(2):82-93.
[39] YERRAMALLA M S,FAYOSSE A,DUGRAVOT A,et al.Association of moderate and vigorous physical activity with incidence of type 2 diabetes and subsequent mortality:27 year follow-up of the Whitehall Ⅱ study[J].Diabetologia,2020,63(3):537-548.
[40] LI X,LI Z,LIU C,et al.Evaluation of the three-in-one team-based care model on hierarchical diagnosis and treatment patterns among patients with diabetes:a retrospective cohort study using Xiamen's regional electronic health records[J/OL].BMC Health Serv Res,2017,17(2017-11-28)[2022-10-25].http://doi.org/10.1186/s12913-017-2705-2.
[1] 柏旭, 苏洁, 李凤, 徐倩, 沈源, 肖凌凤. 我国成人糖尿病视网膜病变影响因素的Meta分析[J]. 预防医学, 2023, 35(7): 595-601.
[2] 沈放如, 杨可, 刘厚璞, 朱家豪, 李迎君. 新生儿出生体重与母亲2型糖尿病关联的双向孟德尔随机化研究[J]. 预防医学, 2023, 35(5): 384-387,409.
[3] 高梦阳, 娄鹏威, 马丽, 李惠, 黄玉婷, 王璐, 王凯. 甲状腺乳头状癌中央区淋巴结转移预测模型研究[J]. 预防医学, 2023, 35(3): 229-234.
[4] 刘国志, 袁空军, 庄蔚, 周光清. 国内外城市社区2型糖尿病健康管理模式比较[J]. 预防医学, 2023, 35(3): 262-266.
[5] 汤洋, 李琳, 廖兴, 林坚. 2型糖尿病患者体感运动联合神经肌肉穴位电刺激干预效果评价[J]. 预防医学, 2022, 34(8): 794-798.
[6] 余鸽, 娄乐, 徐方忠. 记忆任务指标评估抑郁障碍风险研究[J]. 预防医学, 2022, 34(7): 687-691.
[7] 孙霞, 朱艳, 郑鹏, 徐爱花, 董海娜. 超重肥胖和2型糖尿病对瘦素、内脂素的影响研究[J]. 预防医学, 2022, 34(6): 581-585.
[8] 何雅薇, 葛华英, 李修英, 叶赵芳, 孔利萍. 中青年2型糖尿病患者自我管理行为的影响因素研究[J]. 预防医学, 2022, 34(3): 258-262.
[9] 周晓燕, 胡如英, 何青芳, 潘劲, 龚巍巍, 陆凤, 王蒙, 钟节鸣. 浙江省农村2型糖尿病患者糖化血红蛋白控制水平及影响因素分析[J]. 预防医学, 2022, 34(2): 123-128.
[10] 贾庆梅, 张丽, 喻喆, 陈为霞, 孔利萍. 青年2型糖尿病患者糖尿病痛苦水平及其影响因素分析[J]. 预防医学, 2021, 33(8): 808-811.
[11] 杨晓迪, 李曾荣, 刘素贞. 中青年2型糖尿病患者心理弹性的影响因素分析[J]. 预防医学, 2021, 33(7): 665-669.
[12] 李文丽, 苏银霞, 诸葛瑾慧, 王育珊, 王淑霞, 姚华. 新源县哈萨克族人群主要慢性病的影响因素分析[J]. 预防医学, 2021, 33(4): 398-403.
[13] 潘冬梅, 王佳蓓, 郭庆, 李静静. 老年2型糖尿病患者合并骨质疏松症的影响因素分析[J]. 预防医学, 2021, 33(4): 382-384,387.
[14] 唐英琪, 李英, 田坚. 2型糖尿病患者合并非酒精性脂肪性肝病的影响因素分析[J]. 预防医学, 2021, 33(3): 292-294.
[15] 鹿伟, 夏勇, 张世鑫, 宋燕华, 蔡德雷, 徐彩菊, 赵李丽. 5-HMF对早期2型糖尿病合并肝损伤小鼠糖脂代谢和肝功能影响的研究[J]. 预防医学, 2021, 33(11): 1109-1112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed