Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (4): 361-364    DOI: 10.19485/j.cnki.issn2096-5087.2025.04.008
  综述 本期目录 | 过刊浏览 | 高级检索 |
电离辐射诱导表观遗传改变的研究进展
王苏仪1, 宋莉1, 刘志峰2, 姜荣悦1, 宋悦1, 夏璐1 综述, 杨帆1, 审校
1.黑龙江省第二医院,黑龙江 哈尔滨 150000;
2.黑龙江省眼科医院,黑龙江 哈尔滨 150000
Research progress on epigenetic changes induced by ionizing radiation
WANG Suyi1, SONG Li1, LIU Zhifeng2, JIANG Rongyue1, SONG Yue1, XIA Lu1, YANG Fan1
1. The Second Hospital of Heilongjiang Province, Harbin, Heilongjiang 150000, China;
2. Heilongjiang Eye Hospital, Harbin, Heilongjiang 150000, China
全文: PDF(773 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 电离辐射(IR)是一种遗传毒性剂,能够通过诱导表观遗传改变,在多种疾病的发生发展中发挥重要作用。研究表明,IR诱导表观遗传改变的基本机制包括DNA甲基化异常、氧化应激水平升高、组蛋白修饰变化和微小RNA调控等,可引发恶性肿瘤、遗传效应、神经系统损伤、循环系统疾病和放射性白内障等健康危害。本文收集2005—2024年发表的有关IR诱导表观遗传改变的相关文献,对IR诱导表观遗传改变的基本机制及相关疾病风险进行综述,为职业暴露和放射治疗的辐射防护提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王苏仪
宋莉
刘志峰
姜荣悦
宋悦
夏璐 综述
杨帆 审校
关键词 电离辐射表观遗传学DNA甲基化    
Abstract:Ionizing radiation (IR) is a genotoxic agent that can play an important role in the occurrence and development of various diseases by inducing epigenetic changes. Studies have shown that the basic mechanisms of IR-induced epigenetic changes include abnormal DNA methylation, increased oxidative stress levels, changes in histone modifications, and regulation by microRNAs. These can lead to health hazards such as malignant tumors, genetic effects, nervous system damage, circulatory system diseases, and radiation-induced cataracts. This article collected relevant literatures regarding epigenetic changes induced by IR from 2005 to 2024, and reviewed the basic mechanisms of IR-induced epigenetic changes and the associated disease risks, providing the reference for radiation protection in occupational exposure and radiotherapy.
Key wordsionizing radiation    epigenetics    DNA methylation
收稿日期: 2024-11-25      修回日期: 2025-02-28      出版日期: 2025-04-10
中图分类号:  R14  
基金资助:黑龙江省卫生健康委科研课题(20231212010343)
作者简介: 王苏仪,硕士,助理研究员,主要从事劳动卫生研究工作
通信作者: 杨帆,E-mail:seyjcyjs@163.com   
引用本文:   
王苏仪, 宋莉, 刘志峰, 姜荣悦, 宋悦, 夏璐 综述, 杨帆 审校. 电离辐射诱导表观遗传改变的研究进展[J]. 预防医学, 2025, 37(4): 361-364.
WANG Suyi, SONG Li, LIU Zhifeng, JIANG Rongyue, SONG Yue, XIA Lu, YANG Fan. Research progress on epigenetic changes induced by ionizing radiation. Preventive Medicine, 2025, 37(4): 361-364.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.04.008      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I4/361
[1] 王乐. 石家庄市放射工作人员外周血淋巴细胞染色体畸变率和微核细胞率影响因素的调查与分析[D].石家庄:河北医科大学,2016.
WANG L.Investigation and analysis of influencing factors of chromosome aberration rate and micronucleus cell rate in peripheral blood lymphocytes of radiation workers in Shijiazhuang City[D].Shijiazhuang:Hebei Medical University,2016.(in Chinese)
[2] 董小梅. 低剂量电离辐射职业接触人群的遗传损伤和氧化—抗氧化效应的研究[D].重庆:第三军医大学,2015.
DONG X M.Study on genetic damage and oxidation-antioxidant effects in occupational exposure to low dose ionizing radiation [D].Chongqing:Third Military Medical University,2015.(in Chinese)
[3] 朱凌玉. 肺癌细胞获得辐射抗性的H3K4组蛋白甲基化修饰规律[D].厦门:厦门大学,2017.
ZHU L Y.Methylation of H3K4 histone in lung cancer cells acquiring radiation resistance[D].Xiamen:Xiamen University,2017.(in Chinese)
[4] PACCHIEROTTI F,SPANÒ M.Environmental impact on DNA methylation in the germline:state of the art and gaps of knowledge[J/OL].BioMed Res Int,2015[2025-02-28].https://doi.org/10.1155/2015/123484.
[5] 高辉. 辐射诱导小鼠免疫应答的基因组学基础及表观遗传学机制[D].长春:吉林大学,2018.
GAO H.Genomic basis and epigenetic mechanism of immune response induced by radiation in mice[D].Changchun:Jilin University,2018.(in Chinese)
[6] HELM J S,RUDEL R A.Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage,oxidative stress,inflammation,genomic instability,and interaction with hormonal regulation of the breast[J].Arch Toxicol,2020,94(5):1511-1549.
[7] BELLI M,TABOCCHINI M A.Ionizing radiation-induced epigenetic modifications and their relevance to radiation protection[J/OL].Int J Mol Sci,2020,21(17)[2025-02-28].https://doi.org/10.3390/ijms21175993.
[8] 李思,张勇,潘鑫艳,等.辐射诱导旁效应对遗传与表观遗传影响的研究进展[J].解放军医学院学报,2019,40(5):494-497.
LI S,ZHANG Y,PAN X Y,et al.Research progress of effects of radiation induced side effects on heredity and epigenetic inheritance[J].Acad J Chin PLA Med Sch,2019,40(5):494-497.(in Chinese)
[9] WANG S,WU W,CLARET F X.Mutual regulation of microRNAs and DNA methylation in human cancers[J].Epigenetics,2017,12(3):187-197.
[10] KIETZMANN T,PETRY A,SHVETSOVA A,et al.The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system[J].Br J Pharmacol,2017,174(12):1533-1554.
[11] HUAN T X,MENDELSON M,JOEHANE R,et al.Epigenome-wide association study of DNA methylation and microRNA expression highlights novel pathways for human complex traits[J].Epigenetics,2020,15(1/2):183-198.
[12] 刘萌萌,宋曼,田梅,等.氧化应激和DNA损伤在小剂量电离辐射诱导血管内皮细胞损伤中的作用研究[J].中国医学装备,2023,20(2):171-175.
LIU M M,SONG M,TIAN M,et al.Effects of oxidative stress and DNA damage on vascular endothelial cell injury induced by low dose ionizing radiation[J].China Medical Equip,2023,20(2):171-175.(in Chinese)
[13] 姚月良. MSCs抑制辐射诱生胸腺瘤作用及其与p53甲基化的相关性分析[D].长春:吉林大学,2012.
YAO Y L.Inhibitory effect of MSCs on radiation-induced thymoma and its correlation with p53 methylation[D].Changchun:Jilin University,2012.(in Chinese)
[14] LYON C M,KLINGE D M,LIECHTY K C,et al.Radiation-induced lung adenocarcinoma is associated with increased frequency of genes inactivated by promoter hypermethylation[J].Radiat Res,2007,168(4):409-414.
[15] SU S B,JIN Y L,ZHANG W,et al.Aberrant promoter methylation of p16INK4a and O6-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine[J].J Occup Health,2006,48(4):261-266.
[16] MIOUSSE I R,SHAO L,CHANG J,et al.Exposure to low-dose 56Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells[J].Radiat Res,2014,182(1):92-101.
[17] 孙鑫,李爽,陆雪,等.低剂量电离辐射对人淋巴细胞氧化应激及DNA损伤的影响[J].癌变·畸变·突变,2024,36(2):94-99.
SUN X,LI S,LU X,et al.Effects of low dose ionizing radiation on oxidative stress and DNA damage of human lymphocytes[J].Carcinog, Teratog Mutagen,2024,36(2):94-99.(in Chinese)
[18] BETLAZAR C,MIDDLETON R J,BANATI R B,et al.The impact of high and low dose ionising radiation on the central nervous system[J].Redox Biol,2016,9:144-156.
[19] 潘慧姣. Fractalkine通过促进小胶质细胞M2表型转化减轻放射性脑损伤[D].武汉:华中科技大学,2020.
PAN H J.Fractalkine alleviates radiation brain injury by promoting microglial M2 phenotypic transformation[D].Wuhan:Huazhong University of Science and Technology,2020.(in Chinese)
[20] IMPEY S,JOPSON T,PELZ C,et al.Short- and long-term effects of 56Fe irradiation on cognition and hippocampal DNA methylation and gene expression[J].BMC Genomics,2016,17(1):825-842.
[21] ACHARYA M M,BADDOUR A A,KAWASHITA T,et al.Epigenetic determinants of space radiation-induced cognitive dysfunction[J/OL].Sci Rep,2017,7[2025-02-28].https://doi.org/10.1038/srep42885.
[22] SCHULTZ-HECTOR S,TROTT K R.Radiation-induced cardiovascular diseases:is the epidemiologic evidence compatible with the radiobiologic data?[J].Int J Radiat Oncol Biol Phys,2007,67(1):10-18.
[23] LITTLE M P,TAWN E J,TZOULAKI I,et al.A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects,and their possible mechanisms[J].Radiat Res,2008,169(1):99-109.
[24] MITCHEL R E J,HASU M,BUGDEN M,et al.Low-dose radiation exposure and atherosclerosis in ApoE-/- mice[J].Radiat Res,2011,175(5):665-676.
[25] 闫鹏,郑代丰,章群.电离辐射心血管系统损伤途径的研究进展[J].实用预防医学,2018,25(5):635-638.
YAN P,ZHENG D F,ZHANG Q.Research progress of ionizing radiation damage pathway of cardiovascular system[J].Pract Prev Med,2018,25(5):635-638.(in Chinese)
[26] BRENNAN L A,MCGREAL R S,KANTOROW M.Oxidative stress defense and repair systems of the ocular lens[J].Front Biosci(Elite Ed),2012,4(1):141-155.
[27] TRUSCOTT R.Age-related nuclear cataract:oxidation is the key[J].Exp Eye Res,2005,80(5):709-725.
[28] AINSBURY E A,BARNARD S,BRIGHT S,et al.Ionizing radiation induced cataracts:recent biological and mechanistic developments and perspectives for future research[J].Mutat Res Rev Mutat Res,2016,770(PtB):238-261.
[29] LANZA M,BENINCASA G,COSTA D,et al.Clinical role of epigenetics and network analysis in eye diseases:a translational science review[J/OL].J Ophthalmol,2019[2025-02-28].https://doi.org/10.1155/2019/2424956.
[30] ALKOZI H A,RAFAEL F,PINTOR J J.Epigenetics in the eye:an overview of the most relevant ocular diseases[J/OL].Front Genet,2017[2025-02-28].https://doi.org/10.3389/fgene.2017.00144.
[1] 管福强, 周齐红, 张天喜, 俞慧娟. 杭州市医学放射工作人员职业健康检查结果分析[J]. 预防医学, 2025, 37(1): 82-85.
[2] 顾思萌, 李雅晖, 王晓峰, 莫哲. MAGI2-AS3在肿瘤发生发展中的调控机制研究进展[J]. 预防医学, 2024, 36(7): 594-597.
[3] 戴霞云, 罗永斌, 刘安生, 王帆, 陈振龙, 齐素芹. 武汉市放射工作人员甲状腺功能的影响因素分析[J]. 预防医学, 2023, 35(5): 406-409.
[4] 杨勇, 王强, 张磊, 周齐红, 朱波, 杨陆婷. 放射工作人员淋巴细胞染色体畸变及微核检测结果分析[J]. 预防医学, 2019, 31(5): 517-519,522.
[5] 邱旭君, 范瑞, 张莉娜, 郝玲妹. AGTR1基因启动子区DNA甲基化与原发性高血压的相关性研究[J]. 预防医学, 2017, 29(3): 260-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed