Please wait a minute...
文章检索
预防医学  2017, Vol. 29 Issue (2): 150-154    DOI: 10.19485/j.cnki.issn1007-0931.2017.02.012
  论著 本期目录 | 过刊浏览 | 高级检索 |
ARIMA乘积季节模型预测永嘉县其他感染性腹泻的流行
王金娜1,徐若君2,黄大锟2,叶寒立2,陈晓微2,胡永卫2,李晓祺2,凌锋1
1.浙江省疾病预防控制中心,浙江 杭州 310051;
2.永嘉县疾病预防控制中心
Application of multiple seasonal ARIMA model in forecasting the incidenceof other infectious diarrhea in Yongjia County
WANG Jin-na, XU Ruo-jun, HUANG Da-kun, YE Han-li, CHEN Xiao-wei, HU Yong-wei, LI Xiao-qi, LING Feng
The Center for Disease Control and Prevention of Zhejiang Province, Hangzhou, Zhejiang, 310051, China
全文: PDF(920 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 评估求和自回归移动平均(ARIMA)乘积季节模型预测其他感染性腹泻流行的可行性。方法 利用2005—2014年永嘉县其他感染性腹泻的发病率数据,采用ARIMA模型结合随机季节模型的方法,建立预测其他感染性腹泻流行的ARIMA乘积季节模型,同时用2015年的数据做模型预测效果验证。结果 根据模型拟合效果,模型ARIMA(1,1,1)(0,1,1)12的拟合效果为最优,其Ljung-Box检验值为7.796,BIC值为3.602,MAPE值为36.166%,表明模型拟合程度较好;该模型外推验证2015年发病率的预测效果较好,2015年各月发病率的实际值均落在该模型预测值95%可信区间内,且预测值与实际值间依时间变化的趋势也基本一致。结论 ARIMA(1,1,1)(0,1,1)12模型能较好地预测永嘉县其他感染性腹泻的流行趋势,对该病的预警具有一定的价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王金娜
徐若君
黄大锟
叶寒立
陈晓微
胡永卫
李晓祺
凌锋
关键词 其他感染性腹泻ARIMA乘积季节模型流行预测    
AbstractObjective To establish the multiple seasonal autoregressive integrated moving average (ARIMA) model in predicting the incidence of other infectious diarrhea in Yongjia County, and to evaluate the prediction effect of the model. Methods Monthly data of other infectious diarrhea incidence in Yongjia County from January 2005 to December 2014 were obtained from the National Notifiable Disease Surveillance System of China.Combined ARIMA model with stochastic seasonal model was used to establish the multiple seasonal ARIMA model. Monthly incidences of other infectious diarrhea in 2015 were short-term forecasted by the obtained model and compared with the actual data. Results The model ARIMA(1,1,1)(0,1,1)12was supposed to be the best fitted model. The value of Ljung-Box Q statistic was 7.796 and Bayesian Information Criteria was 3.602, and the mean absolute percentage error (MAPE)value was 36.166%. The short-term forecasting values in 2015 matched the actual values well, and the actual values were all fall within the 95% confidence interval of the forecasting values. Conclusion The ARIMA(1,1,1)(0,1,1)12model can be used as a tool for short-term forecasting of the other infectious diarrhea in Yongjia County.
Key wordsOther infectious diarrhea    Multiple seasonal ARIMA model    Forecast
收稿日期: 2016-05-03      出版日期: 2017-11-21
ZTFLH:  R181.3  
通信作者: 凌锋, E-mail: fengl@cdc.zj.cn   
作者简介: 王金娜,硕士,医师,主要从事病媒生物防制工作
引用本文:   
王金娜,徐若君,黄大锟,叶寒立,陈晓微,胡永卫,李晓祺,凌锋. ARIMA乘积季节模型预测永嘉县其他感染性腹泻的流行[J]. 预防医学, 2017, 29(2): 150-154.
WANG Jin-na, XU Ruo-jun, HUANG Da-kun, YE Han-li, CHEN Xiao-wei, HU Yong-wei, LI Xiao-qi, LING Feng. Application of multiple seasonal ARIMA model in forecasting the incidenceof other infectious diarrhea in Yongjia County. Preventive Medicine, 2017, 29(2): 150-154.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn1007-0931.2017.02.012      或      http://www.zjyfyxzz.com/CN/Y2017/V29/I2/150
[1] 娄元霞, 陈恩富. 感染性腹泻的流行病学研究进展[J]. 浙江预防医学, 2010, 22(3): 17-20.
[2] 孔令岩, 李辉, 吴景文, 等. 南昌市其他感染性腹泻ARIMA模型的建立及应用[J]. 现代预防医学, 2013, 40(17): 3153-3158.
[3] 郭海强, 丁龙海, 曲波, 等. 应用ARIMA模型对全国2004-2009年肾综合征出血热疫情分析及预测[J]. 中国人兽共患病学报, 2010, 26(12): 1137-1140.
[4] 潘浩, 郑杨, 吴寰宇, 等. ARIMA模型预测上海市手足口病发病趋势[J]. 预防医学情报杂志, 2011, 27(6): 408-411.
[5] LI Q, GUO N N, HAN Z Y, et al. Application of an autoregressive integrated moving average model for predicting the incidence of hemorrhagic fever with renal syndrome[J]. Am J Trop Med Hyg, 2012, 87(2): 364-370.
[6] 魏亚梅, 郭娜娜, 韩旭, 等. 差分自回归移动平均模型在肾综合征出血热发病预测中的应用研究[J]. 中国媒介生物学及控制杂志, 2014, 25(3): 231-234.
[7] YANG L, BI Z W, KOU Z Q, et al. Time-series analysis on human brucellosis during 2004-2013 in Shandong Province, China[J]. Zoonoses Public Health, 2015, 62(3): 228-235.
[8] WANG T, LIU J, ZHOU Y, et al. Prevalence of hemorrhagic fever with renal syndrome in Yiyuan County, China, 2005-2014[J]. BMC Infect Dis, 2016 (16): 69.
[9] YU H K, KIM N Y, KIM S S, et, al. Forecasting the number of human immunodeficiency virus infections in the Korean population using the autoregressive integrated moving average model[J]. Osong Public Health Res Perspect, 2013, 4(6): 358-362.
[10] WANG T, ZHOU Y, WANG L, et al. Using an autoregressive integrated moving average model to predict the incidence of hemorrhagic fever with renal syndrome in Zibo, China, 2004-2014[J]. Jpn J Infect Dis, 2016, 69(4):279-284.
[11] 艾薇. ARIMA乘积季节模型在我国法定传染病甲乙类发病率预测中的应用[D]. 沈阳: 中国医科大学, 2012.
[12] 陈磊,徐建辉,高丽.基于ARIMA模型的象山半岛水性疾病时间序列分析[J].浙江预防医学,2015,27(11):1131-1133.
[13] 陈莉. 探讨ARIMA模型在细菌性痢疾发病预测中的应用[J]. 中国卫生统计, 2011, 28(4): 417-419.
[14] 谢忠杭, 欧剑鸣, 张莹珍, 等. 应用ARIMA模型预测福建省戊型肝炎疫情[J]. 中国人兽共患病学报, 2011, 27(11): 1047-1050.
[15] 李杰,顾月.ARIMA模型在预测手足口病发病中的应用[J].预防医学,2016,28(10):987-991.
[16] 姚英,沈毅.手足口病发病趋势的ARIMA模型预测[J].浙江预防医学,2015,27(2):147-149.
[17] LIU Q, LIU X, JIANG B, et al. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model[J]. BMC Infect Dis, 2011( 11): 218.
[1] 储文杰,金凯玲,林凯,单欢,陈伟国. 基于ARIMA乘积季节模型预测产超广谱β-内酰胺酶大肠埃希菌流行趋势研究[J]. 预防医学, 2018, 30(7): 680-684.
[2] 罗晓风,曾维斌,周德谦,司徒健. 越秀区法定肠道传染病流行特征分析[J]. 预防医学, 2017, 29(4): 379-381.
[3] 李宁,丘文清,刘燕,刘素芬,林敏静. 惠州市其他感染性腹泻病流行特征分析[J]. 预防医学, 2016, 28(8): 819-820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed