Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (12): 1194-1200    DOI: 10.19485/j.cnki.issn2096-5087.2022.12.002
  论著 本期目录 | 过刊浏览 | 高级检索 |
5种时间序列模型预测肺结核发病比较
王迎丹1, 高春洁1, 王蕾2
1.新疆医科大学公共卫生学院,新疆 乌鲁木齐 830011;
2.新疆医科大学,新疆 乌鲁木齐 830011
Comparison of the effectiveness of five time series models for prediction ofpulmonary tuberculosis incidence
WANG Yingdan1, GAO Chunjie1, WANG Lei2
1. School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, China;
2. Xinjiang Medical University, Urumqi, Xinjiang 830011, China
全文: PDF(1165 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 比较季节性差分自回归滑动平均(SARIMA)模型、Holt-Winters加法模型、Holt-Winters乘法模型、GM (1, 1) 模型和线性组合预测模型预测肺结核发病的效果。方法 通过公共卫生科学数据中心收集2004—2018年新疆维吾尔自治区肺结核月发病数资料,采用2004年1月—2018年6月肺结核发病数分别拟合SARIMA模型、Holt-Winters加法模型、Holt-Winters乘法模型、GM (1, 1) 模型和线性组合预测模型,预测2018年7—12月肺结核发病数;采用绝对百分比误差(APE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)比较模型拟合预测效果,根据APE、MAPE和RMSE最小原则选择最优预测模型。结果 SARIMA模型拟合预测肺结核的APE最小,为10.94%,拟合和预测阶段MAPE分别为11.01%和7.96%,RMSE分别为564和419;线性组合预测模型的APE为13.71%,拟合和预测阶段MAPE分别为12.01%和7.94%,RMSE分别为600和447;Holt-Winters加法模型的Holt-Winters乘法模型、GM (1, 1) 模型的预测效果相对较差。结论 SARIMA模型和线性组合预测模型预测肺结核发病效果优于Holt-Winters加法模型、Holt-Winters乘法模型和GM (1, 1) 模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王迎丹
高春洁
王蕾
关键词 肺结核预测季节性差分自回归滑动平均模型Holt-Winters加法模型Holt-Winters乘法模型GM (1,1) 模型线性组合预测模型    
AbstractObjective To compare the effectiveness of seasonal autoregressive integrated moving average (SARIMA) model, additive Holt-Winters model, Holt-Winters' multiplicative model, GM (1, 1) model and linear combination prediction model for prediction of pulmonary tuberculosis incidence. Methods Data pertaining to monthly incidence of pulmonary tuberculosis in Xinjiang Uyghur Autonomous Region from 2004 to 2008 were captured from Public Health Sciences Data Center. The SARIMA model, additive Holt-Winters model, Holt-Winters' multiplicative model, GM (1, 1) model and linear combination prediction model were created based on the incidence of pulmonary tuberculosis from January 2004 to June 2018, to predict the incidence of pulmonary tuberculosis from July to December 2018. The predictive value of each model was evaluated using absolute percentage error (APE), mean APE (MAPE) and root mean square error (RMSE), and the best model was selected based on minimum APE, MAPE and RMSE. Results The SARIMA model showed the minimum APE (10.94%), 11.01% and 7.96% MAPE and 564 and 419 RMSE at the model-fitting and prediction phases; followed by the linear combination prediction model, with 13.71% APE, 12.01% and 7.94% MAPE and 600 and 447 RMSE at the model-fitting and prediction phases, while the additive Holt-Winters model, Holt-Winters' multiplicative model and GM (1, 1) model showed a low predictive value. Conclusion The SARIMA and linear combination prediction models are superior to additive Holt-Winters model, Holt-Winters' multiplicative model and GM (1, 1) model for prediction of pulmonary tuberculosis incidence.
Key wordspulmonary tuberculosis    prediction    seasonal autoregressive integrated moving average (SARIMA) model    additive Holt-Winters model    Holt-Winters' multiplicative model    GM (1,1) model    linear combination prediction model
收稿日期: 2022-07-06      修回日期: 2022-10-21      出版日期: 2022-12-10
中图分类号:  R521  
基金资助:国家自然科学基金(12061079); 新疆维吾尔自治区自然科学基金(2019D01C206)
作者简介: 王迎丹,硕士研究生在读
通信作者: 王蕾,E-mail:wlei81@126.com   
引用本文:   
王迎丹, 高春洁, 王蕾. 5种时间序列模型预测肺结核发病比较[J]. 预防医学, 2022, 34(12): 1194-1200.
WANG Yingdan, GAO Chunjie, WANG Lei. Comparison of the effectiveness of five time series models for prediction ofpulmonary tuberculosis incidence. Preventive Medicine, 2022, 34(12): 1194-1200.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.12.002      或      https://www.zjyfyxzz.com/CN/Y2022/V34/I12/1194
[1] BROWN J S,BATESON T F,MCDONNELL W F.Effects of exposure to 0.06 ppm ozone on FEV1 in humans:a secondary analysis of existing data[J].Environ Health Perspect,2008,116(8):1023-1026.
[2] 赵棋锋,马珊珊,王吉玲,等.指数平滑法与ARIMA模型对流感样病例流行趋势的预测效果比较[J].预防医学,2020,32(4):381-383,387.
ZHAO Q F,MA S S,WANG J L,et al.Comparison of exponential smoothing method and ARIMA model on epidemic trends in influenza-like cases[J].Prev Med,2020,32(4):381-383,387.
[3] 孙振球. 医学统计学[M].北京:人民卫生出版社,2005:461.
SUN Z Q.Medical Statistics[M].Beijing:People's Medical Publishing House,2005:461.
[4] 徐国祥. 统计预测和决策[M].上海:上海财经大学出版社,2012:164.
XU G X.Statistical forecasting and decision making[M].Shanghai:Shanghai University of Finance and Economics Press,2012:164.
[5] 刘超,孟园园,张庆雯.手足口病发病预测4种时间序列预测模型比较[J].中国公共卫生,2022,38(2):218-223.
LIU C,MENG Y Y,ZHANG Q W.Comparison of four time series prediction models for the incidence of hand-foot-and-mouth disease[J].Chin J Public Health,2022,38(2):218-223.
[6] 竺盛波,沈妙儿,周聪盛,等.奉化区缺血性脑卒中发病季节的SARIMA模型预测[J].预防医学,2018,30(2):176-178,181.
ZHU S B,SHEN M E,ZHOU C S,et al.SARIMA model prediction of ischemic stroke season in Fenghua area[J].Prev Med,2018,30(2):176-178,181.
[7] 傅颖,张晓龙,蒋骏,等.SARIMA模型在苏州市肺结核发病预测中的应用[J].中国热带医学,2020,20(4):339-342.
FU Y,ZHANG X L,JIANG J,et al.Application of SARIMA model in the prediction of tuberculosis incidence in Suzhou[J].Chin J Trop Med,2020,20(4):339-342.
[8] 张鲁玉,孙亮,马兰,等.SARIMA模型和Holt-Winters模型在我国丙肝月报告发病人数预测中的应用比较[J].现代预防医学,2020,47(21):3855-3858,3951.
ZHANG L Y,SUN L,MA L,et al.Comparison of SARIMA model and Holt-winters model in the prediction of the number of reported cases of hepatitis C in China[J].Mod Prev Med,2020,47(21):3855-3858,3951.
[9] 汪鹏,彭颖,杨小兵.ARIMA模型与Holt-Winters指数平滑模型在武汉市流感样病例预测中的应用[J].现代预防医学,2018,45(3):385-389.
WANG P,PENG Y,YANG X B.Application of ARIMA model and Holt-Winters exponential smoothing model in the prediction of influenza-like cases in Wuhan[J].Mod Prev Med,2018,45(3):385-389.
[10] 赵棋锋,马珊珊,王吉玲,等.指数平滑法与ARIMA模型对流感样病例流行趋势的预测效果比较[J].预防医学,2020,32(4):381-383,387.
ZHAO Q F,MA S S,WANG J L,et al.Comparison of the effect of exponential smoothing method and ARIMA model on the prediction trend of influenza-like cases[J].Prev Med,2020,32(4):381-383,387.
[11] 刘天,王芸,姚梦雷,等.GM (1, 1) 灰色模型、马尔可夫链模型及其组合模型和SARIMA模型在甲肝发病数预测中的应用效果比较[J].华南预防医学,2019,45(2):128-132.
LIU T,WANG Y,YAO M L,et al.Comparison of the application effect of GM (1, 1) grey model,Markov chain model and its combination model and SARIMA model in predicting the incidence of hepatitis A[J].South China J Prev Med,2019,45(2):128-132.
[12] 官陈平,傅发源,王依妹,等.灰色预测模型GM (1, 1)在肺结核发病趋势预测中的应用[J].医学动物防制,2021,37(10):931-935.
GUAN C P,FU F Y,WANG Y M,et al.Application of grey predictive model GM (1, 1) in prediction of pulmonary tuberculosis incidence trend[J].Med Anim Control,2021,37(10):931-935.
[13] 张伟文,贺湘焱,古丽娜扎尔·艾克拜尔,等.季节时间序列分析在新疆地区涂阳结核疫情预测预警中的应用[J].实用预防医学,2019,26(1):26-29.
[14] 王华,田昌伟,王文明,等.应用SARIMA-GRNN组合模型分析肺结核流行的季节性特征[J].预防医学,2019,31(1):55-58.
WANG H,TIAN C W,WANG W M,et al.Application of SARIMA-GRNN combination model to analyze the seasonal characteristics of tuberculosis epidemic[J].Prev Med,2019,31(1):55-58.
[1] 卢文海, 孔校杰, 宋丽霞, 卢春如, 于碧鲲, 谢延. SARIMA、Prophet与BSTS模型预测手足口病发病率的效果比较[J]. 预防医学, 2026, 38(1): 79-84.
[2] 陶桃, 张海芳, 凡鹏飞, 李秋华, 陈晓蕾. 丽水市老年肺结核患者治疗转归的影响因素分析[J]. 预防医学, 2025, 37(9): 892-896,902.
[3] 凌红, 汪娜, 宋琴, 徐昊. 2009—2023年黄浦区肺结核流行特征和时空聚集性分析[J]. 预防医学, 2025, 37(9): 937-940.
[4] 严青秀, 王炜, 郝晓刚, 高宇, 方春福, 张幸, 刘文峰. 2017—2023年衢州市肺结核患者未收治情况分析[J]. 预防医学, 2025, 37(8): 799-803.
[5] 龚亮亮, 戎志东. 10~13岁儿童非自杀性自伤行为风险预测模型研究[J]. 预防医学, 2025, 37(6): 546-550.
[6] 白瑞盈, 生海燕. 肺炎住院患者多重耐药菌感染的预测模型研究[J]. 预防医学, 2025, 37(5): 465-470.
[7] 王英杰 综述, 孙高峰, 审校. 2型糖尿病预测模型研究进展[J]. 预防医学, 2025, 37(4): 369-372,377.
[8] 孙佳美, 卢巧玲, 高华强, 杨作凯, 徐来潮. 肺结核密切接触学生结核菌素皮肤试验结果分析[J]. 预防医学, 2025, 37(3): 243-247.
[9] 赵倩颖, 王慧, 李锦成, 许婕, 竺丽梅. 2013—2022年扬州市老年人群肺结核流行特征[J]. 预防医学, 2025, 37(3): 276-279.
[10] 张小乔, 张筱碟, 赵振希, 谢鹏留, 代敏. LSTM、SARIMA和SARIMAX模型预测手足口病发病率的效果比较[J]. 预防医学, 2025, 37(3): 280-284,287.
[11] 潘祥, 童莺歌, 李怡萱, 倪珂, 程雯倩, 辛蒙雨, 胡钰滢. 机器学习方法构建健康素养预测模型的范围综述[J]. 预防医学, 2025, 37(2): 148-153.
[12] 李君, 曾真, 王爵进, 王云峰. 2010—2024年温州市肺结核发病趋势分析[J]. 预防医学, 2025, 37(11): 1140-1144,1150.
[13] 方子健, 李清春, 谢立, 宋旭, 戴若骐, 吴亦斐, 贾庆军, 程庆林. 肺结核与糖尿病共病患者肺结核不良转归的城乡差异[J]. 预防医学, 2025, 37(1): 7-11.
[14] 周国营, 邢丽丽, 苏颖, 刘宏杰, 刘赫, 王迪, 薛锦峰, 戴威, 汪静, 杨兴华. 35~75岁居民心血管病高危风险预测模型研究[J]. 预防医学, 2025, 37(1): 12-16.
[15] 马琼锦, 严慧琴, 吴蕴华, 郭旭, 杨丽佳, 唐利红, 杨圣元. 闵行区肺结核就诊延误、诊断延误和发现延误的影响因素分析[J]. 预防医学, 2025, 37(1): 59-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed