Please wait a minute...
文章检索
预防医学  2026, Vol. 38 Issue (1): 79-84    DOI: 10.19485/j.cnki.issn2096-5087.2026.01.015
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
SARIMA、Prophet与BSTS模型预测手足口病发病率的效果比较
卢文海1, 孔校杰2, 宋丽霞3, 卢春如1, 于碧鲲1, 谢延2
1.深圳市龙岗区坪地公共卫生服务中心,广东 深圳 518117;
2.深圳市福田区第三人民医院,广东 深圳 518029;
3.深圳市疾病预防控制中心,广东 深圳 518054
Comparison of the predictive performance of SARIMA, Prophet, and BSTS models in forecasting the incidence of hand, foot, and mouth disease
LU Wenhai1, KONG Xiaojie2, SONG Lixia3, LU Chunru1, YU Bikun1, XIE Yan2
1. Pingdi Street Public Health Service Center, Longgang District, Shenzhen, Guangdong 518117, China;
2. The Third People's Hospital of Futian District, Shenzhen, Guangdong 518029, China;
3. Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518054, China
全文: PDF(1011 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 比较季节性差分自回归滑动平均(SARIMA)模型、Prophet模型、贝叶斯结构时间序列(BSTS)模型预测手足口病发病率的效果,为优化手足口病早期预警体系提供依据。方法 收集2014—2024年深圳市龙岗区手足口病周发病率资料,以2014—2019年和2023年手足口病发病率数据为训练集构建SARIMA、Prophet和BSTS模型,以2024年手足口病发病率数据为测试集,比较并评价3个模型的预测效果。采用优劣解距离(TOPSIS)法计算C值,综合平均绝对误差(MAE)、均方差误差(MSE)、均方根误差(RMSE)和对称绝对百分比误差(SMAPE)评价模型预测效果。结果 2014—2024年龙岗区累计报告手足口病150 111例,年均发病率为400.72/10万,周发病率在0~63.78/10万范围波动,呈双峰流行特征,发病主高峰为5—7月,次高峰为9—10月。在训练集中,3种模型均能较好地拟合手足口病双峰流行趋势,BSTS模型拟合效果最好,模型的MAE、MSE、RMSE、SMAPE和C值分别为0.124、0.050、0.223、0.021和1.000。在测试集中,短期(≤16周)预测时SARIMA模型、Prophet模型和BSTS模型均有较好的预测效果,Prophet模型预测性能相对更优;随预测时间范围的扩展,3个模型的预测性能均降低。主高峰时段预测时,Prophet模型预测性能相对更优;次高峰时段预测时,BSTS模型预测性能相对更优。结论 对于手足口病周发病率的短期预测,Prophet模型预测效果优于SARIMA模型和BSTS模型;在主高峰时段预测中Prophet模型预测效果更优,次高峰时段预测中BSTS模型预测效果更优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢文海
孔校杰
宋丽霞
卢春如
于碧鲲
谢延
关键词 手足口病发病率季节性差分自回归滑动平均模型Prophet模型贝叶斯结构时间序列模型预测    
AbstractObjective To compare the predictive performance of the seasonal autoregressive integrated moving average (SARIMA) model, the Prophet model, and the Bayesian structural time series (BSTS) model in forecasting the incidence of hand, foot, and mouth disease (HFMD) , so as to provide a basis for optimizing the early warning system of this disease. Methods Weekly incidence data of HFMD in Longgang District, Shenzhen City from 2014 to 2024 were collected. The HFMD incidence data from 2014-2019 and 2023 were used as the training set to construct SARIMA, Prophet, and BSTS models, while the data from 2024 were used as the test set to compare and evaluate the predictive performance of the three models. The technique for order preference by similarity to ideal solution (TOPSIS) method was employed to calculate the C-value. This approach integrates multiple evaluation metrics, such as the mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and symmetric mean absolute percentage error (SMAPE), to comprehensively assess model performance. Results A total of 150 111 cases of HFMD were reported in Longgang District from 2014 to 2024, with an average annual incidence of 400.72/105. The weekly incidence fluctuated between 0 and 63.78/105, exhibiting a bimodal seasonal pattern characterized by a primary peak from May to July and a secondary peak from September to October. In the training set, all three models demonstrated a good fit to the bimodal epidemic trend of HFMD, with the BSTS model achieving the best fit. The BSTS model yielded performance metrics as follows: MAE=0.124, MSE=0.050, RMSE=0.223, SMAPE=0.021, and a C-value of 1.000. In the test set, all three models, including SARIMA, Prophet, and BSTS, performed well for short-term predictions (≤16 weeks), with the Prophet model showing relatively superior predictive performance. However, the prediction accuracy of all models declined as the forecast horizon extended. During the primary peak period (May-July), the Prophet model exhibited better predictive performance, whereas the BSTS model performed relatively better during the secondary peak period (September-October). Conclusions For the short-term forecasting of weekly HFMD incidence, the Prophet model outperformed both the SARIMA and BSTS models. During the primary peak period, the Prophet model demonstrated superior predictive performance, whereas the BSTS model exhibited better accuracy in forecasting the secondary peak period.
Key wordshand,foot,and mouth disease    seasonal autoregressive integrated moving average model    Prophet model    Bayesian structural time series model    forecasting
收稿日期: 2025-07-01      修回日期: 2025-11-11      出版日期: 2026-01-10
中图分类号:  R512.5  
基金资助:深圳市龙岗区医疗卫生科技计划项目(LGWJ2024-122)
作者简介: 卢文海,硕士,主管医师,主要从事疾病控制工作
通信作者: 谢延,E-mail:617276019@qq.com   
引用本文:   
卢文海, 孔校杰, 宋丽霞, 卢春如, 于碧鲲, 谢延. SARIMA、Prophet与BSTS模型预测手足口病发病率的效果比较[J]. 预防医学, 2026, 38(1): 79-84.
LU Wenhai, KONG Xiaojie, SONG Lixia, LU Chunru, YU Bikun, XIE Yan. Comparison of the predictive performance of SARIMA, Prophet, and BSTS models in forecasting the incidence of hand, foot, and mouth disease. Preventive Medicine, 2026, 38(1): 79-84.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2026.01.015      或      https://www.zjyfyxzz.com/CN/Y2026/V38/I1/79
[1] ESPOSITO S,PRINCIPI N.Hand,foot and mouth disease:current knowledge on clinical manifestations,epidemiology,aetiology and prevention[J].Eur J Clin Microbiol Infect Dis,2018,37(3):391-398.
[2] 张儒豪,光旭,何逸飞,等.2013—2022年广东省深圳市手足口病流行特征和病原学分析[J].疾病监测,2024,39(10):1263-1269.
[3] 宋丽霞,卢文海,张振,等.SARIMA及其组合模型对手足口病发病率预测效果比较[J].现代预防医学,2025,52(8):1490-1496,1516.
[4] TAYLOR S J,LETHAM B.Forecasting at scale[J].Am Stat,2018,72(1):37-45.
[5] ZHANG L,YANG F,ZHU Z H,et al.Assessing the impact of COVID-19 interventions on the hand,foot and mouth disease in Guangdong Province,China:a Bayesian modeling study[J/OL].Front Public Health,2024,11[2025-11-11].https://doi.org/10.3389/fpubh.2023.1307321.
[6] 张小乔,张筱碟,赵振希,等.LSTM、SARIMA和SARIMAX模型预测手足口病发病率的效果比较[J].预防医学,2025,37(3):280-283,287.
[7] 卢文海,宋丽霞,熊华威,等.基于Prophet模型的深圳市手足口病日发病率趋势分析与预测[J].中国公共卫生,2025,41(5):585-591.
[8] ZHANG F Q,LI Y Y,LI X X,et al.Comparison of ARIMA and Bayesian structural time series models for predicting the trend of syphilis epidemic in Jiangsu Province[J].Infect Drug Resist,2024,17:5745-5754.
[9] XIE C,WEN H Y,YANG W W,et al.Trend analysis and forecast of daily reported incidence of hand,foot and mouth disease in Hubei,China by Prophet model[J/OL].Sci Rep,2021,11(1)[2025-11-11].https://doi.org/10.1038/s41598-021-81100-2.
[10] LI P H,RUI J,NIU Y,et al.Analysis of HFMD transmissibility among the whole population and age groups in a large city of China[J/OL].Front Public Health,2022,10[2025-11-11].https://doi.org/10.3389/fpubh.2022.850369.
[11] 刘艳,张飞燕,段海平,等.基于分布式滞后非线性模型分析青岛市气象因素与手足口病发病间关联[J].现代预防医学,2025,52(1):63-68,81.
[12] 高琦,刘志东,王舒姿,等.广东省气温对手足口病发病影响及归因风险评估[J].中国公共卫生,2022,38(2):203-208.
[13] 王铭韩,胡泽鑫,冯录召,等.新型冠状病毒感染疫情后我国季节性流感的流行趋势与防控建议[J].中华医学杂志,2024,104(8):559-565.
[14] LUO Z X,JIA X C,BAO J Z,et al.A combined model of SARIMA and Prophet models in forecasting AIDS incidence in Henan Province,China[J/OL]. Int J Environ Res Public Health,2022,19(10)[2025-11-11].https://doi.org/10.3390/ijerph19105910.
[1] 韩亚蓉, 韩颖颖, 蔡波, 林玲. 2013—2022年南通市甲状腺癌发病和死亡趋势分析[J]. 预防医学, 2026, 38(1): 20-25.
[2] 周凡, 王小红, 陈梦倩, 张小兰, 徐则林. 2016—2027年金华市结直肠癌发病和死亡趋势分析及预测[J]. 预防医学, 2026, 38(1): 26-30.
[3] 李玉荣, 王冬飞, 高媛媛, 蒋园园, 林君英, 肖段段. 2010—2024年萧山区结直肠癌发病趋势分析[J]. 预防医学, 2025, 37(9): 927-931,936.
[4] 李君, 朱婷婷, 胡文雪. 2005—2023年温州市丙型病毒性肝炎流行特征分析[J]. 预防医学, 2025, 37(9): 932-936.
[5] 胡晓强, 刘艳, 周思凡, 张子喆, 王雨达, 沈建勇. 2014—2023年湖州市流行性感冒流行特征分析[J]. 预防医学, 2025, 37(9): 959-962.
[6] 李克, 庞志峰, 吴晓虹, 王诚, 何瑶, 唐慧玲. 2007—2024年金华市钩端螺旋体病流行特征分析[J]. 预防医学, 2025, 37(8): 818-821.
[7] 冷雪, 傅淑琴, 舒纪为, 谭启龙, 李科峰. 舟山市带状疱疹首诊病例特征分析[J]. 预防医学, 2025, 37(7): 701-704.
[8] 刘艳, 张子喆, 王雨达, 刘光涛, 沈建勇. 2013—2023年湖州市手足口病流行特征[J]. 预防医学, 2025, 37(7): 718-721.
[9] 龚亮亮, 戎志东. 10~13岁儿童非自杀性自伤行为风险预测模型研究[J]. 预防医学, 2025, 37(6): 546-550.
[10] 丁哲渊, 杨研, 傅天颖, 鲁琴宝, 王心怡, 吴昊澄, 刘魁, 林君芬, 吴晨. 2024年浙江省法定传染病疫情分析[J]. 预防医学, 2025, 37(5): 433-438,442.
[11] 任露露, 顾嘉昌, 闵艺璇, 张思晨, 乔健健, 肖月, 胡静. 2016—2023年宜兴市脑卒中发病趋势分析[J]. 预防医学, 2025, 37(5): 498-502.
[12] 白瑞盈, 生海燕. 肺炎住院患者多重耐药菌感染的预测模型研究[J]. 预防医学, 2025, 37(5): 465-470.
[13] 周沁易, 马涛, 赵跃媛, 王恒学, 吴小清, 丁松宁, 苏晶晶. 2004—2022年南京市法定传染病发病趋势分析[J]. 预防医学, 2025, 37(5): 476-480.
[14] 王英杰 综述, 孙高峰, 审校. 2型糖尿病预测模型研究进展[J]. 预防医学, 2025, 37(4): 369-372,377.
[15] 杨亚, 费洁, 杨怡玮, 张冰, 张倩, 陆一涵. 手足口病发病与气象因素的关联研究[J]. 预防医学, 2025, 37(4): 346-349,355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed