Please wait a minute...
文章检索
预防医学  2024, Vol. 36 Issue (10): 829-833    DOI: 10.19485/j.cnki.issn2096-5087.2024.10.001
  论著 本期目录 | 过刊浏览 | 高级检索 |
应用移动流行区间法分析2012—2023年浙江省流行性感冒流行强度
丰燕1, 徐增豪1, 凌锋2, 金家列1, 王笑笑1, 尚晓鹏2, 孙继民1
1.浙江省疾病预防控制中心传染病预防控制所,浙江 杭州 310051;
2.浙江省疾病预防控制中心,浙江 杭州 310051
Application of moving epidemic method in evaluation of influenza epidemic intensity in Zhejiang Province from 2012 to 2023
FENG Yan1, XU Zenghao1, LING Feng2, JIN Jialie1, WANG Xiaoxiao1, SHANG Xiaopeng2, SUN Jimin1
1. Department of Communicable Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China;
2. Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
全文: PDF(836 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 应用移动流行区间法(MEM)估算2012—2023年浙江省流行性感冒(流感)的流行阈值和分级强度阈值,评估流感流行强度,为浙江省流感防控提供参考。方法 通过中国流感监测信息系统收集2012—2022年浙江省流感流行季(第40周至次年第20周)流感病毒核酸阳性率资料,建立MEM模型,采用交叉验证法筛选最优模型;利用最大累积和百分比函数划分流行前期、流行期和流行后期,估算流感流行阈值及强度分级阈值,并评估2022—2023年流行季浙江省流感流行强度。结果 2012—2022年有5个流感流行季的流感病毒核酸阳性率数据纳入模型,参数δ取1.5时MEM模型表现最优,灵敏度为0.971,特异度为0.745,约登指数为0.716。模型分析结果显示,2022—2023年流行季浙江省流感流行开始阈值和结束阈值分别为19.32%和10.92%,中、高和极高强度阈值分别为48.65%、63.49%和68.47%。由此评估2022年第40周—2023年第7周为流感流行前期;第8—18周为流感流行期,其中第8周处于低流行强度,第9周达到高流行强度,第10—13周处于极高流行强度,第14周、第15周分别回落至高流行和中流行强度,第16—18周降至低流行强度;第19周后处于流行后期。结论 MEM可用于评估流感流行强度,为早期识别流感流行并采取分级防控措施提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丰燕
徐增豪
凌锋
金家列
王笑笑
尚晓鹏
孙继民
关键词 流行性感冒移动流行区间法流行强度流行阈值    
AbstractObjective To estimate the epidemic threshold and graded intensity thresholds of influenza in Zhejiang Province from 2012 to 2023 using the moving epidemic method (MEM), and evaluate the intensity of influenza epidemics, so as to provide the reference for influenza prevention and control in Zhejiang Province. Methods The positive rates of influenza virus per week during the influenza epidemic seasons (from 40th week to 20th week of the following year) in Zhejiang Province from 2012 to 2022 were collected through the Chinese Influenza Surveillance Information System. A MEM model was established and optimized using cross-validation. The maximum accumulated rates percentage was used to divide the epidemic into pre-epidemic, epidemic, and post-epidemic periods, and to estimate the epidemic thresholds and graded intensity thresholds. The intensity of influenza epidemics in Zhejiang Province during the 2022-2023 epidemic season were assessed. Results The positive rates of influenza virus in five epidemic seasons from 2012 to 2022 were included in the model. The MEM model performed best when the parameter δ was set to 1.5, with a sensitivity of 0.971, a specificity of 0.745, and a Youden's index of 0.716. According to the model analysis, the epidemic beginning and ending thresholds of influenza in Zhejiang Province during the 2022-2023 epidemic season were 19.32% and 10.92%, respectively, and the medium, high, and extremely high intensity thresholds were 48.65%, 63.49%, and 68.47%, respectively. During 2022-2023, the influenza epidemic was in the pre-epidemic period from the 40th week in 2022 to the 7th week in 2023; the epidemic period was from the 8th to the 18th week, the epidemic intensity was low in the 8th week and increased to a high level in the 9th week, and reached to a extremely high level from the 10th to the 13th week, then fell to the high and the medium level in the 14th week and 15th week, respectively, and fell to a low level from the 16th to the 18th week; the influenza epidemic entered the post-epidemic period since the 19th week. Conclusion MEM could be applied for evaluation of influenza epidemic intensity, providing the reference for early identification and taking graded preventive and control measures.
Key wordsinfluenza    moving epidemic method    epidemic intensity    epidemic threshold
收稿日期: 2024-04-18      修回日期: 2024-09-08      出版日期: 2024-10-10
中图分类号:  R373.1  
基金资助:2022年浙江省卫生健康科技计划项目(2022KY127,2022KY131); 国家科技部重点研发计划项目(2023YFC2308705)
作者简介: 丰燕,硕士,主管医师,主要从事传染病防制工作
通信作者: 孙继民,E-mail:jmsun@cdc.zj.cn   
引用本文:   
丰燕, 徐增豪, 凌锋, 金家列, 王笑笑, 尚晓鹏, 孙继民. 应用移动流行区间法分析2012—2023年浙江省流行性感冒流行强度[J]. 预防医学, 2024, 36(10): 829-833.
FENG Yan, XU Zenghao, LING Feng, JIN Jialie, WANG Xiaoxiao, SHANG Xiaopeng, SUN Jimin. Application of moving epidemic method in evaluation of influenza epidemic intensity in Zhejiang Province from 2012 to 2023. Preventive Medicine, 2024, 36(10): 829-833.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2024.10.001      或      http://www.zjyfyxzz.com/CN/Y2024/V36/I10/829
[1] World Health Organization.Influenza(Seasonal)[EB/OL].[2024-09-08].https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal).
[2] YOUNG B E,CHEN M.Influenza in temperate and tropical Asia:a review of epidemiology and vaccinology[J].Hum Vaccin Immunother,2020,16(7):1659-1667.
[3] 王璇,刘社兰,曹艳丽,等.2013—2022年浙江省流行性感冒暴发疫情流行特征[J].预防医学,2023,35(8):645-648.
[4] 奕天飞,沈鹏,平建明,等.2017—2021年鄞州区流行性感冒时空聚集性分析[J].预防医学,2023,35(9):741-745.
[5] VEGA T,LOZANO J E,MEERHOFF T,et al.Influenza surveillance in Europe:establishing epidemic thresholds by the moving epidemic method[J].Influenza Other Respir Viruses,2013,7(4):546-558.
[6] VEGA T,LOZANO J E,MEERHOFF T,et al.Influenza surveillance in Europe:comparing intensity levels calculated using the moving epidemic method[J].Influenza Other Respir Viruses,2015,9(5):234-246.
[7] 刘天,姚梦雷,黄继贵,等.移动流行区间法在流感监测预警中的应用及其参数设置[J].国际病毒学杂志,2018,25(6):415-418.
[8] 丁克琴,谷少华,劳旭影,等.基于移动流行区间法的浙江省宁波市冬春季流行性感冒流行强度研究[J].疾病监测,2020,35(2):126-131.
[9] 刘艳,金玫华,沈建勇,等.新型冠状病毒肺炎疫情防控措施对湖州市流行性感冒流行特征的影响[J].预防医学,2021,33(4):332-336.
[10] 郭倩,周罗晶.2018—2019年冬春季江苏省扬州市流感流行强度评估以及高峰期预测分析[J].疾病监测,2020,35(4):316-320.
[11] 刘斌琳,冯博,肖琳,等.基于移动流行区间法制定宁夏流感分级预警阈值[J].宁夏医科大学学报,2023,45(6):634-639.
[12] 钱程,戴启刚,许可,等.移动流行区间法在评估江苏省流感流行强度中的应用研究[J].中国卫生统计,2020,37(1):10-13,17.
[13] 王宇,张莉,吴双胜,等.移动流行区间法在北京市流感流行阈值估计及强度分级中的应用[J].中华流行病学杂志,2020,41(2):201-201.
[14] 王宇,吴双胜,张莉,等.应用移动流行区间法和综合指数建立北京市流感流行分级预警标准[J].国际病毒学杂志,2020,27(4):271-274.
[15] 谭亚运,曾令佳,秦颖,等.移动流行区间法在中国7个气候区流感流行阈值制定中的应用效果评价[J].中华预防医学杂志,2019,53(10):1007-1011.
[16] 李楠,刘润友,兰亚佳.移动流行区间法在西南三省流感流行中的应用研究[J].现代预防医学,2023,50(7):1181-1186.
[17] 魏柯雯,马仲慧,杨鹏,等.移动流行区间法在北京市房山区流感流行分级预警中的应用[J/OL].预防医学情报杂志[2024-09-08].https://doi.org/10.3969/j.cnki.1006-4028.230393.
[1] 王栗菲, 孙明希, 鹿燕青, 李森, 寿钧, 孟祥杰. 余杭区流行性感冒流行特征分析[J]. 预防医学, 2024, 36(7): 626-629.
[2] 奕天飞, 沈鹏, 平建明, 张俊锋, 孙烨祥. 2017—2021年鄞州区流行性感冒时空聚集性分析[J]. 预防医学, 2023, 35(9): 741-745.
[3] 王璇, 刘社兰, 曹艳丽, 孙琬琬, 丰燕, 凌锋. 2013—2022年浙江省流行性感冒暴发疫情流行特征[J]. 预防医学, 2023, 35(8): 645-648.
[4] 石鑫, 许军, 舒畅, 冷焱. 黑龙江省老年人群流行性感冒流行特征[J]. 预防医学, 2023, 35(3): 250-252,261.
[5] 侯志刚, 刘杨, 葛锐, 亓云鹏, 富小飞. 嘉兴市70岁及以上老年人接种流行性感冒疫苗的保护效果评价[J]. 预防医学, 2023, 35(12): 1033-1036.
[6] 程伟, 周晓燕, 余昭, 刘社兰, 潘金仁, 凌锋, 陈恩富. 2016—2019年浙江省流行性感冒超额死亡率分析[J]. 预防医学, 2022, 34(9): 865-869.
[7] 龚震宇, 龚训良. 世界卫生组织关于2021—2022年北半球流感季节使用的流感疫苗成分的建议(摘译)[J]. 预防医学, 2021, 33(6): 647-648.
[8] 刘艳, 金玫华, 沈建勇, 刘光涛, 付云, 杨中荣, 任飞林, 徐德顺. 新型冠状病毒肺炎疫情防控措施对湖州市流行性感冒流行特征的影响[J]. 预防医学, 2021, 33(4): 332-336.
[9] 刘牧文, 王婧, 杨旭辉, 宋姝娟. 杭州市流行性感冒聚集性疫情流行特征[J]. 预防医学, 2021, 33(1): 16-20.
[10] 余昭, 孙琬琬, 刘社兰, 程伟, 潘金仁. 呼吸道传染病监测体系运行状况分析[J]. 预防医学, 2021, 33(1): 101-103.
[11] 王慎玉, 甘正凯, 胡晓松, 邵燕志, 陈颖萍, 梁贞贞, 邢博, 陈直平, 吕华坤. 儿童生命质量测定量表用于流感儿童评价的信度和效度研究[J]. 预防医学, 2020, 32(5): 471-474.
[12] 赵丹, 郝艳会. 辽阳市流行性感冒流行特征分析[J]. 预防医学, 2019, 31(9): 914-916,920.
[13] 吴杰, 孙喆, 颜伟. 滨州市流行性感冒监测结果分析[J]. 预防医学, 2019, 31(9): 917-920.
[14] 杨洁, 刘栋楠, 许苗苗, 卫成, 武恕星, 武景福. 三门峡市流行性感冒病原学监测结果[J]. 预防医学, 2019, 31(8): 813-815,819.
[15] 陈艳, 李科峰, 戴亚欣, 虞哲. 应用分析流程图法建立流行性感冒风险预报等级[J]. 预防医学, 2019, 31(4): 350-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed