Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (8): 836-841    DOI: 10.19485/j.cnki.issn2096-5087.2022.08.016
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
结核分枝杆菌异烟肼与乙硫异烟胺交叉耐药的相关基因研究
夏强1, 刘海灿2, 赵秀芹2, 万康林2, 赵丽丽2
1.迪安医学检验中心,浙江,杭州 310012;
2.中国疾病预防控制中心,北京 102206
Study on genes for cross-resistance to isoniazid and ethionamidein Mycobacterium tuberculosis
XIA Qiang1, LIU Haican2, ZHAO Xiuqin2, WAN Kanglin2, ZHAO Lili2
1. Hangzhou Di'an Medical Laboratory Center, Hangzhou, Zhejiang 310012, China;
2. Chinese Center for Disease Control and Prevention, Beijing 102206, China
全文: PDF(897 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 分析结核分枝杆菌异烟肼(INH)和乙硫异烟胺(Eto)交叉耐药及与相关耐药基因突变的关系,为耐多药结核病的临床诊断和治疗提供依据。方法 选择126株结核分枝杆菌临床分离株,包括88株耐多药结核分枝杆菌和38株INH与RFP敏感结核分枝杆菌。采用药物敏感性试验检测菌株对INH和Eto耐药情况;采用PCR检测INH和Eto耐药相关基因katGinhAethAmshAndhoxyR-ahpC间隔区和inhA启动子;以表型耐药为金标准,计算通过突变基因检测INH与Eto交叉耐药菌株的灵敏度、特异度和准确性。结果 126株结核分枝杆菌临床分离株中,INH与Eto交叉耐药菌株37株,占29.37%;INH耐药+Eto敏感的菌株51株,占40.48%;INH敏感+Eto耐药菌株4株,占3.17%;INH与Eto敏感菌株34株,占26.98%。41株Eto耐药菌株中,INH耐药37株,占90.24%。检出katG突变64株,突变率为50.79%;oxyR-ahpC间隔区突变4株,突变率为3.17%;inhA突变2株,突变率为1.59%;均为INH耐药。inhA启动子突变11株,突变率为8.73%;ndh突变1株;均为INH与Eto交叉耐药。ethA突变23株,突变率为18.25%;mshA突变40株,突变率为31.75%;在Eto耐药株和敏感株中均检出。inhA启动子检测INH与Eto交叉耐药菌株的灵敏度为29.73%(95%CI:16.44%~47.17%),特异度为100.00%(95%CI:87.36%~100.00%),准确性为63.38%(95%CI:51.76%~73.63%)。结论 Eto耐药菌株中INH耐药率较高。inhA启动子突变与结核分枝杆菌对INH和Eto交叉耐药相关,利用inhA启动子区域突变检测INH与Eto交叉耐药具有一定的参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏强
刘海灿
赵秀芹
万康林
赵丽丽
关键词 结核病异烟肼乙硫异烟胺交叉耐药    
AbstractObjective To examine the association between the cross-resistance to ethionamide (Eto) and isoniazid (INH) and mutations of drug resistant genes in Mycobacterium tuberculosis (MTB), so as to provide the evidence for clinical diagnosis and treatment for multidrug-resistant (MDR) tuberculosis. Methods Totally 126 MTB clinical isolates were selected, including 88 MDR-MTB clinical isolates and 38 INH- and rifampicin (RFP)-sensitive isolates. The resistance to INH and Eto was tested in MTB clinical isolates using the drug susceptibility test, and the mutations in the spacer region of INH and Eto resistance-related katG, inhA, ethA, mshA, ndh, spacer region of oxyR-ahpC and inhA promoter were detected using PCR assay. The phenotypic resistance served as a gold standard, and the sensitivity, specificity and accuracy of gene mutation tests were calculated for detection of MTB clinical isolates cross-resistant to INH and Eto. Results Of the 126 MTB clinical isolates, there were 37 isolates cross-resistant to INH and Eto (29.37%), 51 isolates with resistance to INH and susceptibility to Eto (40.48%), 4 isolates with susceptibility to INH and resistance to Eto (3.17%) and 34 isolates with susceptibility to INH and Eto (26.98%). Among the 41 Eto-resistant MTB clinical isolates, there were 37 isolates with resistance to INH (90.24%). There were 64 MTB clinical isolates detected with katG mutations (50.79%), 4 isolates with mutation in the spacer region of oxyR-ahpC (3.17%), 2 isolates with inhA mutations (1.59%), and these isolates were all resistant to INH. There were 11 MTB clinical isolates detected with mutation in the inhA promoter (8.73%) and one isolate with ndh mutation, and all these isolates were cross-resistant to INH and Eto. There were 23 MTB clinical isolates detected with ethA mutations (18.25%) and 40 isolates with mshA mutations (31.75%), in which Eto-susceptible and -resistant isolates were detected. The diagnostic sensitivity, specificity and accuracy of inhA promoter tests for detection of cross-resistance to INH and Eto were 29.73% (95%CI: 16.44%-47.17%), 100.00% (95%CI: 87.36%-100.00%) and 63.38% (95%CI: 51.76%-73.63%) in MTB clinical isolates. Conclusions The prevalence of INH resistance is high in Eto-resistant MTB clinical isolates. Mutation in the inhA promoter region correlates with the cross-resistance to INH and Eto in MTB clinical isolates, and detection of mutation in the inhA promoter may be feasible to detect the cross-resistance to INH and Eto in MTB clinical isolates.
Key wordstuberculosis    ethionamide    isoniazid    cross-resistance
收稿日期: 2022-03-10      修回日期: 2022-06-07      出版日期: 2022-08-10
中图分类号:  R521  
作者简介: 夏强,硕士,主管技师,主要从事细菌耐药相关研究
通信作者: 赵丽丽,E-mail:zhaolili@icdc.cn   
引用本文:   
夏强, 刘海灿, 赵秀芹, 万康林, 赵丽丽. 结核分枝杆菌异烟肼与乙硫异烟胺交叉耐药的相关基因研究[J]. 预防医学, 2022, 34(8): 836-841.
XIA Qiang, LIU Haican, ZHAO Xiuqin, WAN Kanglin, ZHAO Lili. Study on genes for cross-resistance to isoniazid and ethionamidein Mycobacterium tuberculosis. Preventive Medicine, 2022, 34(8): 836-841.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.08.016      或      http://www.zjyfyxzz.com/CN/Y2022/V34/I8/836
[1] World Health Organization.Global tuberculosis report2020[R/OL].[2022-06-07].https://www.who.int/publications/i/item/9789240013131.pdf.
[2] LI B Y, SHI W P,ZHOU C M,et al.Rising challenge of multidrug-resistant tuberculosis in China:a predictive study using Markov modeling[J/OL].Infect Dis Poverty,2020,9(3):57-64.[2022-06-07].https://doi.org/10.1186/s40249-020-00682-7.
[3] World Health Organization.WHO consolidated guidelines on drug-resistant tuberculosis treatment[M].Geneva:World Health Organization,2019.
[4] LIU Q,YANG D,QIU B,et al.Drug resistance gene mutations and treatment outcomes in MDR-TB:a prospective study in Eastern China[J/OL].PLoS Negl Trop Dis,2021,15(1)[2022-06-07].https://doi.org/10.1371/journal.pntd.0009068.
[5] 宋艳华,高孟秋,李琦.结核分枝杆菌对乙硫异烟胺/丙硫异烟胺耐药的机制及其增敏剂研究进展[J].中国防痨杂志,2020,42(2):173-177.
SONG Y H,GAO M Q,LI Q.Research progress on the mechanism of drug resistance of Mycobacterium tuberculosis to ethionamide/pthionamide and ethionamide boosters[J].Chin J Antitubercul,2020,42(2):173-177.
[6] VILCHÈZE C,JACOBS W R,Jr.Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis:genes,mutations,and causalities[J/OL].Microbiol Spectr, 2014,2(4)[2022-06-07].https://doi.org/10.1128/microbiolspec.MGM2-0014-2013.
[7] World Health Organization.Policy guidance on drug-susceptibility testing(DST)of second-line antituberculosis drugs[M].Geneva:World Health Organization,2008.
[8] SOMERVILLE W,THIBERT L,SCHWARTZMAN K,et al.Extraction of Mycobacterium tuberculosis DNA:a question of containment[J].J Clin Microbiol,2005,43(6):2996-2997.
[9] ISLAM M M, TAN Y,HAMEED H M A, et al.Detection of novel mutations associated with independent resistance and cross-resistance to isoniazid and prothionamide in Mycobacterium tuberculosis clinical isolates[J/OL].Clin Microbiol Infect, 2019, 25(8)[2022-06-07].https://doi.org/10.1016/j.cmi.2018.12.008.
[10] 全国第五次结核病流行病学抽样调查技术指导组,全国第五次结核病流行病学抽样调查办公室.2010年全国第五次结核病流行病学抽样调查报告[J].中国防痨杂志,2012,8(34):485-508.
Technical Guidance Group of the Fifth National TB Epidemiological Survey,the Office of the Fifth National TB Epidemiological Survey.The fifth national tuberculosis epidemiological survey in 2010[J].Chin J Antitubercul,2012,8(34):485-508
[11] 宋艳华,王桂荣,霍凤敏,等.耐多药和广泛耐药MTB的inhA基因突变与对丙硫异烟胺耐药的相关性分析[J].中国防痨杂志,2018,40(8):821-824.
SONG Y H,WANG G R,HUO F M,et al.Correlation analysis between inhA gene mutation and protionamide-resistance in multidrug resistance and extensively drug-resistant Mycobacterium tuberculosis[J].Chin J Antitubercul,2018,40(8):821-824.
[12] HALDER S K,ELMA F.In silico identification of novel chemical compounds with antituberculosis activity for the inhibition of InhA and EthR proteins from Mycobacterium tuberculosis[J/OL].J Clin Tuber Other Mycobacterial Dis,2021,24[2022-06-07].https://doi.org/10.1016/j.jctube.2021.100246.
[13] ZHANG Y,YEW W W.Mechanisms of drug resistance in Mycobacterium tuberculosis:update 2015[J].Int J Tuberc Lung Dis,2015,19(11):1276-1289.
[14] MIESEL L,WEISBROD T R,MARCINKEVICIENE J A,et al.NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis[J].J Bacteriol,1998,180(9):2459-2467.
[15] ROHDE K H,SORCI L.The prospective synergy of antitubercular drugs with NAD biosynthesis inhibitors[J/OL].Front Microbiol,2021,11[2022-06-07].https://doi.org/10.3389/fmicb.2020.634640.
[16] VILCHÈZE C,AV-GAY Y,ATTARIAN R,et al.Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis[J].Mol Microbiol,2008,69(5):1316-1329.
[17] PINHATA J M W,BRANDAO A P,MENDES F D F,et al.Correlating genetic mutations with isoniazid phenotypic levels of resistance in Mycobacterium tuberculosis isolates from patients with drug-resistant tuberculosis in a high burden setting[J/OL].Eur J Clin Microbiol Infect Dis,2021,40(12):2551-2561[2022-06-07].https://doi.org/10.1007/s10096-021-04316-0.
[18] DE SOUZA V C,ANTUNES D,SANTOS L H,et al.Insights into the mechanism of ethionamide resistance in Mycobacterium tuberculosis through an in silico structural evaluation of EthA and mutants identified in clinical isolates[J/OL].Catalysts,2020,10(5)[2022-06-07].https://doi.org/10.3390/catal10050543.
[1] 胡嘉, 黄钦, 郑建刚, 何旺瑞, 曾艳文. 江西省居民结核病防治核心信息知晓情况调查[J]. 预防医学, 2023, 35(8): 718-720,731.
[2] 马丽, 梁智超, 陈阳贵, 张为胜, 毛宏凯, 胥婉婷, 曹明芹. 2010—2019年乌鲁木齐市学生结核病病例发现延迟、就诊延迟、确诊延迟分析[J]. 预防医学, 2023, 35(1): 53-56,60.
[3] 马志, 叶尔扎提·吾瓦特, 腾子豪, 蒋远东, 向阳. 2009—2020年伊宁市学生结核病就诊延迟情况调查[J]. 预防医学, 2022, 34(2): 180-184.
[4] 腾子豪, 蒋远东, 王玥, 王艳杰, 樊晓蕾, 胡鹏远, 向阳. 新疆某职业院校新生结核潜伏感染的影响因素分析[J]. 预防医学, 2022, 34(11): 1156-1160.
[5] 桑国鑫, 陈同, 车洋, 陈云鹏, 贺天锋. 宁波市结核分枝杆菌和艾滋病病毒双重感染筛查结果[J]. 预防医学, 2022, 34(11): 1121-1124.
[6] 陈松华. 世界卫生组织关于新冠肺炎流行期间的结核病防控意见[J]. 预防医学, 2021, 33(11): 1187-1188.
[7] 王云霞, 王甜甜, 张娟娟, 陈帆, 龚言红, 曹世义, 卢祖洵, 袁青. 宝安区老年肺结核患者异烟肼和利福平耐药的影响因素分析[J]. 预防医学, 2021, 33(1): 69-71.
[8] 郭海萍, 尚媛媛, 李姗姗, 逄宇. 全基因组测序在结核病分子流行病学研究中的应用[J]. 预防医学, 2020, 32(9): 899-903.
[9] 陈馨仪,综述; 陈彬, 蒋健敏,审校. 移动信息技术在结核病患者治疗管理中的应用进展[J]. 预防医学, 2020, 32(6): 583-587.
[10] 贾庆军, 谢立, 吴亦斐, 王乐, 陆敏, 赵刚. 杭州市结核病患者耐药检测结果分析[J]. 预防医学, 2019, 31(3): 289-292.
[11] 潘稚芬, 袁亚芳, 张君丽, 张鹭. 结核分枝杆菌耐多药相关蛋白筛选及诊断价值研究[J]. 预防医学, 2018, 30(12): 1212-1216.
[12] 冯地忠, 何伏华, 陈寿东. 老年结核病患者临床特征分析[J]. 预防医学, 2018, 30(12): 1255-1257.
[13] 胡碧波,傅克本,许亮亮,何丽萍. 应用ARIMA模型预测结核病发病率研究[J]. 预防医学, 2018, 30(10): 1011-1015.
[14] 郝晓刚, 王炜, 陈忠兵. 农村居民结核病防治知识调查[J]. 预防医学, 2017, 29(3): 320-321,324.
[15] 胡嘉, 邱林西, 黄钦, 孟旭, 王健. 贫困地区糖尿病患者中结核病检出率及其影响因素分析[J]. 预防医学, 2016, 28(9): 913-915.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed