Please wait a minute...
文章检索
预防医学  2020, Vol. 32 Issue (5): 475-478    DOI: 10.19485/j.cnki.issn2096-5087.2020.05.010
  综述 本期目录 | 过刊浏览 | 高级检索 |
巨噬细胞在麻风免疫致病机制中的作用
王涧, 严丽英, 徐新美, 刘干红(综述),沈惠良(审校)
浙江省皮肤病防治研究所皮肤科,浙江 德清 313200
Study progress on macrophages in the immunological pathogenesis of leprosy
WANG Jian, YAN Liying, XU Xinmei, LIU Ganhong, SHEN Huiliang
Department of Dermatology,Zhejiang Provincial Institute of Dermatology,Deqing,Zhejiang 313200,China
全文: PDF(373 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 麻风患者存在不同程度的细胞免疫缺陷,但机制尚不明确。巨噬细胞是一群表型和功能异质性的免疫细胞,是机体免疫反应的重要细胞组成,在体内通过多种途径参与麻风的炎症反应。巨噬细胞的表型极化受到多种因素调控,在结核样型麻风中,巨噬细胞呈M1表型;在瘤型麻风中,巨噬细胞呈M2表型。本文对巨噬细胞在麻风免疫致病机制中的作用研究进行综述,为麻风防治提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王涧
严丽英
徐新美
刘干红
沈惠良
关键词 巨噬细胞麻风免疫致病机制研究进展    
Abstract:Patients with leprosy varies in the degree of cellular immune defect,but the mechanism remains unclear. Macrophages,a group of immunocytes with different phenotypes and functions,are important cell components in the immune response,and participate in the occurrence and development of leprosy. The polarization of macrophages phenotypes is regulated by many factors. In tuberculoid leprosy,macrophages are polarized into M1 phenotype;in lepromatous leprosy,macrophages are polarized into M2 phenotype. We reviewed the research about the effects of macrophage in the pathogenic mechanism of leprosy infection,so as to provide a theoretical basis for leprosy prevention and treatment.
Key wordsmacrophages    leprosy    immunological pathogenesis    study progress
收稿日期: 2019-11-15      修回日期: 2019-12-30      出版日期: 2020-05-10
中图分类号:  R755  
通信作者: 沈惠良,E-mail:114101083@qq.com   
作者简介: 王涧,硕士,主治医师,主要从事临床皮肤性病诊疗工作
引用本文:   
王涧, 严丽英, 徐新美, 刘干红,沈惠良. 巨噬细胞在麻风免疫致病机制中的作用[J]. 预防医学, 2020, 32(5): 475-478.
WANG Jian, YAN Liying, XU Xinmei, LIU Ganhong, SHEN Huiliang. Study progress on macrophages in the immunological pathogenesis of leprosy. Preventive Medicine, 2020, 32(5): 475-478.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2020.05.010      或      http://www.zjyfyxzz.com/CN/Y2020/V32/I5/475
[1] NATH I, SAINI C, VALLURI V L.Immunology of leprosy anddiagnostic challenges[J].Clin Dermatol,2015,33(1):90-98.
[2] DE ALMEIDA-NETO F B, ASSIS COSTA V M, OLIVEIRA-FILHO A F, et al. TH17 cells, interleukin-17 and interferon-γin patients and households contacts of leprosy with multibacillary and paucibacillary forms before and after the start of chemotherapy treatment[J]. J Eur Acad Dermatol Venereol, 2015, 29(7): 1354-1361.
[3] 吴大兴,杨松标,钱建荣.桐乡市居民麻风病防治核心知识知晓情况调查[J].预防医学,2019,31(3):316-319.
[4] 魏星,许春芳.巨噬细胞在急性胰腺炎发生和发展中的作用[J].中华胰腺病杂志,2019,19(5):397-400.
[5] 任婷婷,金寿德,李知衡,等.肺泡巨噬细胞在慢性阻塞性肺疾病免疫致病机制中研究进展[J].临床肺科杂志,2019,24(9):1724-1728.
[6] 殷玉莲,潘玲婷,程亦勤,等.巨噬细胞促进创面修复中作用的研究进展[J].海南医学院学报,2019,25(15):1191-1195.
[7] FONSECA A B, SIMON M D, CAZZANIGA R A, et al. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy[J/OL]. Infect Dis Poverty (2017-02-06)[2019-12-30]. https://www.ncbi.nlm.nih.gov/pubmed?term=the%20influence%20of%20innate%20and%20adaptive%20immune%20responses%20on%20the%20differential%20clinical%20outcomes%20of%20leprosy&cmd=correctspelling. DOI:10.1186/s40249-016-0229-3.
[8] PINHEIRO R O,SCHMITZ V,SILVA B J A,et al. Innate immune responses in leprosy[J/OL]. Front Immunol (2018-03-28)[2019-12-30]. https://www.ncbi.nlm.nih.gov/pubmed/29643852.DOI:10.3389/fimmu.2018.00518.
[9] 赵辩. 中国临床皮肤病学[M].南京:江苏科学技术出版社,2010:467-484.
[10] LAST��RIA J C,ABREU M A. Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects-part 1[J]. An Bras Dermatol,2014,89(2): 205-218.
[11] TALHARI C, TALHARI S, PENNA G O.Clinical aspects of leprosy[J].Clin Dermatol,2015,33(1): 26-37.
[12] SILVA C A, DANELISHVILI L, MCNAMARA M, et al.Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis[J].Infect Immun, 2013, 81(7): 2645-2659.
[13] ARAUJO S, LOBATO J, REIS E D E M, et al. Unveiling healthy carriers and subclinical infections among household contacts of leprosy patients who play potential roles in the disease chain of transmission[J]. Mem Inst Oswaldo Cruz,2012,107(Suppl.1): 55-59.
[14] DE LIMA C S, MARQUES M A, DEBRIE A S, et al. Heparin-binding hemagglutinin (HBHA) of Mycobacterium leprae is expressed during infection and enhances bacterial adherence to epithelial cells[J]. FEMS Microbiol Lett,2009,292(2): 162-169.
[15] FUKUI S, LWAMOTO N, TAKATANI A, et al.M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 monocytes to osteoclastogenesis[J/OL]. Front Immunol,2018,8 [2019-12-30]. https://doi.org/10.3389/fimmu.2017.01958.
[16] WANG L X, ZHANG S X, WU H J, et al.M2b macrophage polarization and its roles in diseases[J]. J Leukoc Biol, 2019, 106(2): 345-358.
[17] KLEINNIJENHUIS J, OOSTING M, JOOSTEN L A, et al.Innate immune recognition of Mycobacterium tuberculosis[J/OL].Clin Dev Immunol,2011 (2011-01-29)[2019-12-30].http://dx.doi.org/10.1155/2011/405310.
[18] DE SOUSA J R, LUCENA NETD F D, SOTTO M N, et al. Immunohistochemical characterization of the M4 macrophage population in leprosy skin lesions[J/OL]. BMC Infect Dis,2018,18 (2018-11-15)[2019-12-30].https://doi.org/10.1186/s12879-018-3478-x.
[19] FACHIN L R, SOARES C T, BELONE A F, et al.Immunohistochemical assessment of cell populations in leprosy-spectrum lesions and reactional forms[J]. Histol Histopathol,2017,32(4): 385-396.
[20] DE SOUSA J R, DE SOUSA R P, AÃRAO T L, et al. In situ expression of M2 macrophage subpopulation in leprosy skin lesions[J].Acta Trop,2016,157: 108-114.
[21] MARTINEZ F O,GORDON S,LOCATI M,et al.Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression[J]. J Immunol,2006,177(10): 7303-7311.
[22] GAO H,HUANG F Y,WANG Z P.Research trends of macrophage polarization: a bibliometric analysis[J].Chin Med J (Engl.) 2018,131(24): 2968-2975.
[23] HUANG Z, LUO Q, GUO Y, et al. Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro[J/OL]. PLoS One,2015,10 (6) [2019-12-30]. https://doi.org/10.1371/journal.pone.0129744.
[24] WANG Z C, YAO Y, WANG N, et al.Deficiency in interleukin-10 production by M2 macrophages in teosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol,2018,8(11): 1323-1333.
[25] 魏桂红,孔辉,解卫平.巨噬细胞在肺动脉高压发病机制中的作用[J].国际呼吸杂志,2019,39(17):1353-1356.
[26] BANSAL F, NARANG T, DOGRA S, et al.Serum macrophage migration inhibitory factor levels in leprosy patients with erythema nodosum leprosum[J]. Indian J Dermatol Venereol Leprol,2018,84(5): 573-577.
[27] SICA A, MANTOVANI A.Macrophage plasticity and polarization:in vivo veritas[J]. J Clin Invest,2012,122(3): 787-795.
[28] MONTOYA D, CRUZ D, TELES R M, et al.Divergence of macrophage phagocytic and antimicrobial programs in leprosy[J].Cell Host Microbe,2009,6(4): 343-353.
[29] 尤元刚,翁小满.先天免疫在麻风中的研究进展[J].中国麻风皮肤病杂志,2011,27(3):190-194.
[30] KIBBIE J, TELES R M, WANG Z, et al. Jagged1 instructs macrophage differentiation in leprosy[J/OL]. PLoS Pathogens, 2016,12(8) [2019-12-30]. https://doi.org/10.1371/journal.ppat.1005808.
[31] 阮静瑶,陈必成,张喜乐,等.巨噬细胞M1/M2极化的信号通路研究进展[J].免疫学杂志,2015,31(10):911-917.
[32] MOURA D F, DE MATTOS K A, AMADEU T P, et al. CD163 favors Mycobacterium leprae survival and persistence by promoting anti-inflammatory pathways in lepromatous macrophages[J].Eur J Immunol,2012,42(11): 2925-2936.
[33] UPADHYAY R, DUA B, SHARMA B, et al.Transcription factors STAT-4, STAT-6 and CREB regulate Th1/Th2 response in leprosy patients: effect of M. leprae antigens[J]. BMC Infect Dis,2019,19(1): 1-11.
[1] 赵乾秀, 白宇超, 白淼, 张灿, 张传福. 哺乳动物微塑料暴露的毒理机制研究进展[J]. 预防医学, 2023, 35(4): 303-306.
[2] 吴李梅, 费丽娟, 孔文明, 王燕敏, 曾凡荣, 杜娜. 浙江省实施《全国消除麻风病危害规划(2011—2020年)》终期评估结果[J]. 预防医学, 2022, 34(7): 649-653.
[3] 张晓海, 施惠娟, 张洪涛, 钟华, 姚敏, 谭又吉. 麻风病治愈患者结直肠癌及癌前病变的影响因素研究[J]. 预防医学, 2022, 34(12): 1257-1261.
[4] 冯地忠, 张兆辉, 李孝宏, 何伏华, 张如意. 淮安市麻风病治愈患者慢性病的影响因素分析[J]. 预防医学, 2022, 34(10): 1043-1047.
[5] 吴登俊, 冯地忠, 张兆辉, 赵琼. 淮安市居民麻风病防治核心知识调查[J]. 预防医学, 2021, 33(5): 519-521.
[6] 朱瑶, 韦意娜, 孙畅, 何寒青. 新型冠状病毒肺炎疫苗研究进展[J]. 预防医学, 2021, 33(2): 143-148.
[7] 狄春红, 章云衡, 谭晓华, 杨磊. 砷对巨噬细胞胆固醇流出及ABCA1、ABCG1、SRBI基因表达的影响[J]. 预防医学, 2021, 33(10): 977-982.
[8] 吴李梅, 费丽娟, 孔文明, 王燕敏, 曾凡荣, 杜娜. 浙江省2019年新报告麻风病例特征分析[J]. 预防医学, 2020, 32(8): 832-833.
[9] 杜哲群, 胡洁, 沈国初, 许荣全. 嘉兴市8月龄儿童接种MMR、MR疫苗疑似预防接种异常反应监测结果[J]. 预防医学, 2020, 32(11): 1086-1090.
[10] 孔文明, 姚强, 沈云良, 吴李梅, 于小兵. 2010—2019年浙江省麻风反应及影响因素研究[J]. 预防医学, 2020, 32(11): 1100-1103.
[11] 邢宇航, 韦余东, 李娜, 张人杰, 张双凤综述, 张雪海审校. 健康影响评估研究进展[J]. 预防医学, 2019, 31(8): 791-794.
[12] 罗翠美, 赵敏, 张建霞, 刘芳, 成凌. 2000—2018年罗湖区麻风病流行特征分析[J]. 预防医学, 2019, 31(7): 699-700.
[13] 陈颖, 综述, 龚巍巍, 审校. 脑卒中经济负担研究方法及应用进展[J]. 预防医学, 2019, 31(6): 578-581,585.
[14] 吴大兴, 杨松标, 钱建荣. 桐乡市居民麻风病防治核心知识知晓情况调查[J]. 预防医学, 2019, 31(3): 316-319.
[15] 赵丰权, 戴建义, 李君桦, 蔡玉伟, 董培红. 黄芩苷体内抑制结核分枝杆菌的机制研究[J]. 预防医学, 2019, 31(10): 998-1000,1006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed