Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (7): 705-709    DOI: 10.19485/j.cnki.issn2096-5087.2025.07.013
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
2005—2023年金华市猩红热流行特征和时空聚集性分析
李克, 庞志峰, 吴晓虹, 唐慧玲
金华市疾病预防控制中心(金华市卫生监督所),浙江 金华 321002
Epidemiological characteristics and spatio-temporal clustering analysis of scarlet fever in Jinhua City from 2005 to 2023
LI Ke, PANG Zhifeng, WU Xiaohong, TANG Huiling
Jinhua Center for Disease Control and Prevention (Jinhua Institute of Public Health Supervision),Jinhua, Zhejiang 321002, China
全文: PDF(840 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 了解2005—2023年浙江省金华市猩红热流行特征和时空聚集特征,为完善猩红热防控策略提供参考。方法 通过中国疾病预防控制信息系统监测报告管理系统收集2005—2023年金华市猩红热病例个案资料,采用描述性流行病学方法分析猩红热流行特征,采用平均年度变化百分比(AAPC)分析2005—2023年猩红热发病趋势;采用空间自相关和时空扫描分析猩红热发病时空聚集特征。结果 2005—2023年金华市累计报告猩红热病例1 494例,年均报告发病率为1.41/10万,无明显变化趋势(AAPC=1.706%,P>0.05);存在2个发病高峰,为4—6月和11月至次年1月。男性937例,女性557例,男女比为1.68∶1。年龄以<10岁为主,1 391例占93.11%,其中3~<7岁儿童高发,936例占62.65%。职业以幼托儿童、学生和散居儿童为主,1 466例占98.13%。东阳市、浦江县和永康市猩红热年均报告发病率较高,分别为4.58/10万、3.04/10万和1.99/10万。空间自相关分析结果显示,2005—2023年金华市猩红热发病存在空间正相关(Moran's I=0.579,P<0.05),高-高聚集区主要分布在东阳市和浦江县。时空扫描分析结果显示,2005—2023年金华市猩红热存在8个时空聚集区,Ⅰ类聚集区为东阳市9个乡镇(街道),聚集时间为2013年8月—2022年12月;Ⅱ类聚集区7个,覆盖东阳市、浦江县、永康市、义乌市和磐安县部分乡镇(街道)。结论 2005—2023年金华市猩红热发病较平缓,3~<7岁儿童高发,存在时空聚集性,4—6月和11月至次年1月为发病高峰,东阳市、浦江县和永康市为高发地区。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李克
庞志峰
吴晓虹
唐慧玲
关键词 猩红热流行特征时空聚集性空间自相关    
AbstractObjective To investigate the epidemiological characteristics and spatial-temporal clustering characteristics of scarlet fever in Jinhua City, Zhejiang Province from 2005 to 2023, so as to provide a reference for improving the prevention and control strategy of scarlet fever. Methods The data of scarlet fever cases in Jinhua City from 2005 to 2023 were collected from the China Information System for Disease Control and Prevention, and descriptive epidemiological method was used to analyze the epidemiological characteristics of scarlet fever. The average annual percent change (AAPC) was calculated to analyze the trend of scarlet fever incidence from 2005 to 2023. The spatial-temporal clustering of scarlet fever was identified using spatial autocorrelation analysis and space-time scanning analysis. Results A total of 1 494 scarlet fever cases were reported in Jinhua City from 2005 to 2023, and the average annual reported incidence rate was 1.41/105, with no significant change trend (AAPC=1.706%, P>0.05). There were two incidence peaks, from April to June and from November to January of the next year. There were 937 males and 557 females, with a male to female ratio of 1.68∶1. The age was mainly <10 years (1 391 cases, 93.11%), of which 3-<7 years was the high incidence age group (936 cases, 62.65%). There were 1 466 cases of preschool children, students, and scattered children, accounting for 98.13%. The average annual reported incidence of scarlet fever in Dongyang City, Pujiang County, and Yongkang City was 4.58/105, 3.04/105, and 1.99/105, respectively. The spatial autocorrelation analysis showed that there was a positive spatial correlation between the incidence of scarlet fever in Jinhua City from 2005 to 2023 (Moran's I=0.579, P<0.05), and the high-high clustering areas were mainly distributed in Dongyang City and Pujiang County. The spatial-temporal scanning analysis showed that there were 8 spatial-temporal clustering areas of scarlet fever in Jinhua City from 2005 to 2023. The class Ⅰ clustering area was 9 towns in Dongyang City, and the clustering period was from August 2013 to December 2022. There were 7 class Ⅱ clusters, covering some streets in Pujiang County, Dongyang City, Yongkang City, Yiwu City, and Pan'an County. Conclusions From 2005 to 2023, the incidence of scarlet fever in Jinhua City was relatively low, and children aged 3-<7 years had a high incidence, and there was a spatiotemporal clustering. The peak incidence was from April to June and from November to January of the next year. Dongyang City, Pujiang County, and Yongkang City had high incidence areas.
Key wordsscarlet fever    epidemiological characteristics    spatio-temporal clustering    spatial autocorrelation
收稿日期: 2025-03-05      修回日期: 2025-05-31      出版日期: 2025-07-10
中图分类号:  R515.1  
基金资助:金华市公益性技术应用研究项目(2022-4-226)
作者简介: 李克,本科,主管医师,主要从事疾病预防控制工作
通信作者: 庞志峰,E-mail:13735696037@163.com   
引用本文:   
李克, 庞志峰, 吴晓虹, 唐慧玲. 2005—2023年金华市猩红热流行特征和时空聚集性分析[J]. 预防医学, 2025, 37(7): 705-709.
LI Ke, PANG Zhifeng, WU Xiaohong, TANG Huiling. Epidemiological characteristics and spatio-temporal clustering analysis of scarlet fever in Jinhua City from 2005 to 2023. Preventive Medicine, 2025, 37(7): 705-709.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.07.013      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I7/705
[1] 刘诗蒙. 2004—2019年吉林省猩红热发病趋势与空间聚集性研究[D].长春:吉林大学,2021.
LIU S M.Study on the incidence trend and spatial clustering of scarlet fever in Jilin Province from 2004 to 2019[D].Changchun:Jilin University,2021.(in Chinese)
[2] 苗雨露,曲凯,申雨欣,等.中国1950—2022年猩红热流行时间变化趋势[J].中国预防医学杂志,2024,25(4):491-497.
MIAO Y L,QU K,SHEN Y X,et al.Temporal trends of scarlet fever in China from 1950 to 2022[J].Chin Prev Med,2024,25(4):491-497.(in Chinese)
[3] LU Q B,WU H C,DING Z Y,et al.Analysis of epidemiological characteristics of scarlet fever in Zhejiang Province,China,2004-2018[J/OL].Int J Environ Res Public Health,2019,16(18)[2025-05-31].https://doi.org/10.3390/ijerph16183454.
[4] FANG Z,MA C J,XU W L,et al.Epidemiological characteristics and trends of scarlet fever in Zhejiang Province of China:population-based surveillance during2004-2022[J/OL].Can J Infect Dis Med Microbiol,2024[2025-05-31].https://doi.org/10.1155/2024/6257499.
[5] 刘念,钟伟,张兆文,等.2005—2020年上海市闵行区猩红热流行特征分析[J].上海预防医学,2022,34(8):770-773.
LIU N,ZHONG W,ZHANG Z W,et al.Epidemiological characteristics of scarlet fever in Minhang District,Shanghai from 2005 to 2020[J].Shanghai J Prev Med,2022,34(8):770-773.(in Chinese)
[6] 崔朋伟,杭惠,陈立凌.2010—2019年苏州市猩红热流行病学特征[J].江苏预防医学,2021,32(3):329-330.
CUI P W,HANG H,CHEN L L.Epidemiological characteristics of scarlet fever in Suzhou City from 2010 to 2019[J].Jiangsu J Prev Med,2021,32(3):329-330.(in Chinese)
[7] 丁哲渊,吴昊澄,鲁琴宝,等.2020年浙江省法定传染病疫情分析[J].预防医学,2021,33(4):325-331.
DING Z Y,WU H C,LU Q B,et al.Epidemiological characteristics of the notifiable infectious diseases reported in Zhejiang Province,2020[J].China Prev Med J,2021,33(4):325-331.(in Chinese)
[8] BROUWER S,BARNETT T C,LY D,et al.Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing streptococcus pyogenes[J/OL].Nature Commun,2020,11(1)[2025-05-31].https://doi.org/10.1038/s41467-020-18700-5.
[9] LIU Y H,DING H,CHANG S T,et al.Exposure to air pollution and scarlet fever resurgence in China:a six-year surveillance study[J/OL].Nature Commun,2020,11(1)[2025-05-31].https://doi.org/10.1038/s41467-020-17987-8.
[10] CHENG W,LI H H,ZHANG X Y,et al.The association between ambient particulate matters,nitrogen dioxide,and childhood scarlet fever in Hangzhou,eastern China,2014-2018[J/OL].Chemosphere,2020,246[2025-05-31].https://doi.org/10.1016/j.chemosphere.2020.125826.
[11] LI D H,LIU Y C,ZHANG W,et al.The association between the scarlet fever and meteorological factors,air pollutants and their interactions in children in northwest China[J].Int J Biometeorol,2024,68(10):1989-2002.
[12] ZHANG R,ZHANG Y H.Modeling the effects of air pollutants and meteorological factors on scarlet fever in five provinces,northwest China,2013-2018[J/OL].J Theor Biol,2022,544[2025-05-31].https://doi.org/10.1016/j.jtbi.2022.111134.
[13] 尤元海. 猩红热流行及其影响因素研究进展[J].中华实用儿科临床杂志,2022,37(21):1626-1629.
YOU Y H.Research progress on scarlet fever epidemic and associated factors[J].Chin J Appl Clin Pediatr,2022,37(21):1626-1629.(in Chinese)
[14] 李羚,杜飞,吕强,等.2015—2022年四川省猩红热流行特征和时空聚集性分析[J].预防医学情报杂志,2024,40(9):1080-1087.
LI L,DU F,LYU Q,et al.Epidemiological characteristics and temporal-spatial clustering of scarlet fever in Sichuan Province from 2015 to 2022[J].J Prev Med Inf,2024,40(9):1080-1087.(in Chinese)
[15] 王乙,王哲,金新叶,等.2010—2023年杭州市猩红热流行病学特征及时空聚集性分析[J].中华疾病控制杂志,2024,28(8):950-955,968.
WANG Y,WANG Z,JIN X Y,et al.Epidemiological characteristics and spatial-temporal clustering of scarlet fever in Hangzhou from 2010 to 2023[J].Chin J Dis Control Prev,2024,28(8):950-955,968.(in Chinese)
[16] 孙景,王月仲,肖征,等.西城区6~14岁儿童传染病流行特征分析[J].预防医学,2018,30(9):933-936.
SUN J,WANG Y Z,XIAO Z,et al.Analysis of the epidemiological characteristics of infectious diseases among children aged 6-14 in Xicheng District[J].China Prev Med J,2018,30(9):933-936.(in Chinese)
[1] 刘艳, 张子喆, 王雨达, 刘光涛, 沈建勇. 2013—2023年湖州市手足口病流行特征[J]. 预防医学, 2025, 37(7): 718-721.
[2] 马莹, 张文霞, 马金宇, 董军强, 王秀琴, 李文玉, 赵立华. 2014—2023年宁夏流行性感冒时空聚集性分析[J]. 预防医学, 2025, 37(6): 608-611.
[3] 丁哲渊, 杨研, 傅天颖, 鲁琴宝, 王心怡, 吴昊澄, 刘魁, 林君芬, 吴晨. 2024年浙江省法定传染病疫情分析[J]. 预防医学, 2025, 37(5): 433-438,442.
[4] 周沁易, 马涛, 赵跃媛, 王恒学, 吴小清, 丁松宁, 苏晶晶. 2004—2022年南京市法定传染病发病趋势分析[J]. 预防医学, 2025, 37(5): 476-480.
[5] 张超, 沈建勇, 罗小福, 刘艳, 韩利萍. 2007—2023年湖州市流行性乙型脑炎流行特征[J]. 预防医学, 2025, 37(4): 386-389.
[6] 白峻竹, 比里克孜汉·阿西木, 游姝萌, 阿米乃·艾比, 金雅静, 徐元勇, 温亮, 张文义, 买买提江·吾布力艾山. 2016—2022年和田地区乙型病毒性肝炎和丙型病毒性肝炎流行特征分析[J]. 预防医学, 2025, 37(4): 404-407,412.
[7] 杨献青, 方利洪, 方莲, 钟荣万, 王飞, 梁杰, 黄雁寅, 徐校平. 2005—2024年建德市人间布鲁氏菌病流行特征分析[J]. 预防医学, 2025, 37(3): 304-307,311.
[8] 李玲, 魏晶娇, 潘琼娇, 李万仓, 王坚. 2010—2023年温州市流行性腮腺炎时空聚集性分析[J]. 预防医学, 2025, 37(3): 284-287.
[9] 赵倩颖, 王慧, 李锦成, 许婕, 竺丽梅. 2013—2022年扬州市老年人群肺结核流行特征[J]. 预防医学, 2025, 37(3): 276-279.
[10] 李睿, 亓云鹏, 王远航, 查亦薇, 富小飞. 2004—2023年嘉兴市百日咳流行特征[J]. 预防医学, 2025, 37(2): 139-142.
[11] 许纯, 李锦成, 杨文彬, 姜艳, 杨科佼, 卜春红. 2019—2023年扬州市性病流行特征[J]. 预防医学, 2025, 37(2): 158-162.
[12] 王远航, 富小飞, 亓云鹏, 刘杨, 周晚玲, 郭飞飞. 嘉兴市流行性感冒时空聚集性分析[J]. 预防医学, 2025, 37(1): 55-58.
[13] 杨旭, 王旭雯. 2015—2023年无锡市风疹流行特征[J]. 预防医学, 2025, 37(1): 65-68.
[14] 张涛, 杜治平, 王祚懿, 金屡华. 2014—2023年金华市突发公共卫生事件特征[J]. 预防医学, 2025, 37(1): 69-72.
[15] 赵棋锋, 王吉玲, 马岩, 方益荣. 2005—2023年绍兴市布鲁氏菌病流行特征分析[J]. 预防医学, 2024, 36(9): 806-808,812.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed