Please wait a minute...
文章检索
预防医学  2021, Vol. 33 Issue (6): 568-572    DOI: 10.19485/j.cnki.issn2096-5087.2021.06.006
  论著 本期目录 | 过刊浏览 | 高级检索 |
83例新型冠状病毒肺炎病例CT图像定量分析
林春苗1, 秦彤2, 陆昱养3, 余乐熺2
1.浙江省人民医院(杭州医学院附属人民医院)放射科,浙江 杭州 310014;
2.武汉市武昌医院放射科;
3.象山县疾病预防控制中心检验科
Quantification of CT images in 83 cases of COVID-19
LIN Chunmiao*, QIN Tong, LU Yuyang, YU Lexi
*Departments of Radiology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital,Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
全文: PDF(966 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 全自动人工智能(AI)系统定量分析新型冠状病毒肺炎(COVID-19)病例胸部CT图像,为判断COVID-19病例重症转化和早期临床干预提供依据。方法 选择2020年1月23日—2月14日武汉市武昌医院收治的83例COVID-19确诊病例为研究对象。收集病例临床资料,参考《新型冠状病毒肺炎诊疗方案(试行第七版)》将病例纳入普通组和重症组,利用胸部CT图像的全自动AI系统定量化图像参数,比较两组病例的CT影像学特征。结果 普通组46例,重症组37例,年龄分别为(62.68±13.69)岁和(50.52±12.45)岁。重症组和普通组病例总肺部病变百分比[MQR)]分别为19.80%(21.69%)和9.78%(13.24%),总肺病变体积分别为622.87(1 145.73)cm3和333.55(401.77)cm3,右下叶病变体积分别为205.73(246.95)cm3和126.02(164.21)cm3,肺CT值在-300~-200 Hu时的左肺体积分别为26.50(21.20)cm3和21.43(13.11)cm3,右肺体积分别为38.02(48.78)cm3和26.92(18.04)cm3,差异均有统计学意义(P<0.05)。疾病症状出现后第10~16 d肺部病变体积达到高峰。结论 COVID-19重症病例肺病变体积较大,尤其是右下肺,应在疾病症状出现后第10~16 d加强监测,为临床重症转化提出早期预警。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林春苗
秦彤
陆昱养
余乐熺
关键词 新型冠状病毒肺炎CT图像临床分型    
AbstractObjective To quantitatively analyze the chest computerized tomography ( CT ) images of coronavirus disease 2019 ( COVID-19 ) cases by automatic artificial intelligence ( AI ) system, so as to provide the basis for the prediction of severe cases and early clinical intervention. Methods Eighty-three confirmed cases of COVID-19 from January 23 to February 14, 2020 in Wuchang Hospital of Wuhan were selected and the clinical data were collected. According to the diagnosis and treatment Plan of COVID-19 (seventh trial), the patients were divided into an ordinary group and a severe group. The parameters of chest CT images were quantified by the automatic AI system, and the CT imaging features of two groups were compared. Results There were 46 cases in the ordinary group and 37 cases in the severe group, with the age of ( 62.68 ±13.69 ) years and ( 50.52 ±12.45 ) years, respectively. The percentages of total pulmonary lesions, the lesion volume of bilateral lungs, the lesion volume of right lower lung, the left lung volume and the right lung volume from -300 to -200 Hu [median (inter-quartile range)] were 19.80% ( 21.69% ), 622.87 ( 1 145.73 ) cm3, 205.73 ( 246.95 ) cm3, 26.50 (21.20) cm3 and 38.02 (48.78) cm3 in the severe group, which were significantly different from 9.78% ( 13.24% ), 333.55 ( 401.77 ) cm3, 126.02 (164.21) cm3, 21.43 (13.11) cm3 and 26.92 ( 18.04 ) cm3 in the ordinary group ( P<0.05 ). The volume of pulmonary lesions reached the peak from 10 to 16 days after infection. Conclusion The lung lesions in severe cases of COVID-19 are large, especially in the right lower lung, and need to be closely monitored from 10 to 16 days after infection for early warning of severe cases.
Key wordscoronavirus disease 2019    computerized tomography image    clinical classification
收稿日期: 2020-12-14      修回日期: 2021-03-15     
中图分类号:  R563.1  
作者简介: 林春苗,硕士,主治医师,主要从事放射科影像诊断工作
通信作者: 余乐嬉,E-mail:94115673@qq.com   
引用本文:   
林春苗, 秦彤, 陆昱养, 余乐熺. 83例新型冠状病毒肺炎病例CT图像定量分析[J]. 预防医学, 2021, 33(6): 568-572.
LIN Chunmiao, QIN Tong, LU Yuyang, YU Lexi. Quantification of CT images in 83 cases of COVID-19. Preventive Medicine, 2021, 33(6): 568-572.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2021.06.006      或      http://www.zjyfyxzz.com/CN/Y2021/V33/I6/568
[1] HUANG C,WANG Y,LI X,et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan,China[J]. Lancet,2020,395(10223):497-506.
[2] XU Z,SHI L,WANG Y,et al.Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J] .Lancet Respir Med,2020,8(4):420-422.
[3] LI K, WU J, WU F,et al.The clinical and chest CT features associated with severe and critical COVID-19 pneumonia[J] .Invest Radiol,2020,55(6):327-331.
[4] PAN F,YE T,SUN P,et al.Time course of lung changes on chest CT during recovery from 2019 novel coronavirus(COVID-19)pneumonia[J] .Radiology,2020,295(3):715-721.
[5] YOON S H,LEE K H,KIM J Y,et al.Chest radiographic and CT findings of the 2019 novel coronavirus disease(COVID-19):analysis of nine patients treated in Korea[J] .Korean J Radiol,2020,21(4):494-500.
[6] 汪锴,康嗣如,田荣华,等. 新型冠状病毒肺炎胸部CT影像学特征分析[J] .中国临床医学,2020,27(1):27-31.
[7] 吕志彬,关春爽,闫铄,等. 人工智能在CT预测新型冠状病毒肺炎转归中的价值[J] .首都医科大学学报,2020,41(3):340-344.
[8] 中华人民共和国国家卫生健康委员会办公厅,国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第七版)[EB/OL].(2020-03-04)[2021-03-15] .http://www.nhc.gov.cn/cms-search/downFiles/f9ea38ce2c2d4352bf61ab0feada439f.pdf.
[9] BERNHEIM A,MEI X,HUANG M,et al. Chest CT findings in coronavirus disease-19(COVID-19):relationship to duration of infection [J/OL] .Radiology,2020,295(3)(2020-02-20)[2021-03-15] .https://doi.org/10.1148/radiol.2020200463.
[10] WANG D,HU B,HU C,et al.Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan,China[J] .JAMA,2020,323(11):1061-1069.
[11] CUI S,SHU Z,SHAO Y,et al. Age-associated changes in aging lungs:a study with auto-segmentation and radiomics based on CT images [J/OL] .Res Sq(2020-02-20)[2021-03-15].https://www.researchsquare.com/article/rs-13785/v1. DOI:10.21203/rs. 2.23216/v1.
[12] 黄璐,韩瑞,于朋鑫,等. 新型冠状病毒肺炎不同临床分型间CT和临床表现的相关性研究 [J/OL] .中华放射学杂志,2020[2021-03-15]. http://rs.yiigle.com/yufabiao/1180145.htm. DOI:10.3760/cma.j.issn.1005-1201.2020.0003.
[13] RUUSKANEN O,LAHTI E,JENNINGS L C,et al.Viral pneumoniat[J]. Lancet,2011,377(9773):1264-1275.
[14] LUO W,YU H,GOU J,et al.Clinical pathology of critical patient with novel coronavirus pneumonia(COVID-19):pulmonary fibrosis and vascular changes including microthrombosis formation firstly found [J/OL] .Clin Infect Dis(2020-03-09)[2021-03-15].https://www.researchgate.net/publication/339939319_Clinical_Pathology_of_Critical_Patient_with_Novel_Coronavirus_Pneumonia_COVID-19_Pulmonary_Fibrosis_and_Vascular_Changes_including_Microthrombosis_Formation_firstly_Found. DOI:10.1097/TP.0000000000003412.
[15] SHEN C,YU N,CAI S,et al.Quantitative computed tomography analysis for stratifying the severity of coronavirus disease 2019[J] .J Pharm Anal,2020,10(2):123-129.
[16] DENG L S,YUAN J,DING L,et al.Comparison of patients hospitalized with COVID-19,H7N9 and H1N1[J] .Infect Dis Poverty,2020,9(1):163-171.
[17] SCHOLTEN E T,JACOBS C,VAN GINNEKEN B,et al.Detection and quantification of the solid component in pulmonary subsolid nodules by semiautomatic segmentation[J] .Eur Radiol,2015,25(2):488-496.
[18] TIAN S,HU W,NIU L,et al.Pulmonary pathology of early phase 2019 novel coronavirus(COVID-19)pneumonia in two patients with lung cancer[J] .J Thorac Oncol,2020,15(5):700-704.
[19] NISHIYAMA A,KAWATA N,YOKOTA H,et al. A predictive factor for patients with acute respiratory distress syndrome:CT lung volumetry of the well-aerated region as an automated method [J/OL] .Eur J Radiol,2020,122(2019-11-14)[2021-03-15]. https://www.ejradiology.com/article/S0720-048X(19)30398-5/fulltext. DOI:10.1016/j.ejrad.2019.108748.
[20] COLOMBI D,BODINI F C,PETRINI M,et al.Well-aerated lung on admitting chest CT to predict adverse outcome in COVID-19 pneumonia[J] .Radiology,2020,296(2):E86-E96.
[1] 沈强, 张月琴, 江圣洁, 甘露, 尉莹莹. 新冠肺炎疫情期间医务人员焦虑状况的Meta分析[J]. 预防医学, 2022, 34(7): 720-726.
[2] 华倩慧, 徐校平, 吕华坤, 张杭杰, 蒋健敏. 特定人群接种新冠病毒疫苗的安全性和有效性研究进展[J]. 预防医学, 2022, 34(5): 479-482.
[3] 施长苗, 敖新华, 邵斌, 杨卫锋, 王伟洪, 童照威, 沈建勇, 余育晖. 入境人员集中隔离点新型冠状病毒核酸检测阳性病例特征分析[J]. 预防医学, 2022, 34(4): 325-329.
[4] 张栋梁, 易波, 陈奕, 胡群雄, 凌锋, 马晓, 雷松, 董红军, 倪红霞, 毛洋, 李巧方, 陈耀荣, 陆烨, 龚震宇, 蔡剑, 陈直平, 吕筠, 许国章. 一例海港口岸境外关联新型冠状病毒感染的流行病学调查[J]. 预防医学, 2022, 34(4): 380-384,388.
[5] 王臻, 刘碧瑶, 戚小华, 张人杰, 边俏, 江敏. 浙江省新型冠状病毒肺炎本土感染者流行特征[J]. 预防医学, 2022, 34(12): 1240-1244.
[6] 吴晨, 吴昊澄, 鲁琴宝, 丁哲渊, 王心怡, 傅天颖, 杨珂, 林君芬. 浙江省境外输入新型冠状病毒肺炎病例流行特征[J]. 预防医学, 2022, 34(12): 1245-1250.
[7] 郑伟, 戴伊宁, 孙楠楠, 尹乔乔, 吴青青, 惠田辰, 吴文昊, 黄海军, 童永喜, 黄益澄, 汪明珊, 陈美娟, 张家杰, 严蓉, 高海女, 潘红英. 应用随机森林模型和Logistic回归模型分析COVID-19的影响因素[J]. 预防医学, 2021, 33(7): 722-725.
[8] 戚小华, 刘碧瑶, 王臻, 张人杰. 浙江省境外输入新型冠状病毒肺炎病例特征[J]. 预防医学, 2021, 33(6): 541-544.
[9] 刘艳, 金玫华, 沈建勇, 刘光涛, 付云, 杨中荣, 任飞林, 徐德顺. 新型冠状病毒肺炎疫情防控措施对湖州市流行性感冒流行特征的影响[J]. 预防医学, 2021, 33(4): 332-336.
[10] 陈恩富. 疫苗时代新型冠状病毒肺炎疫情防控策略[J]. 预防医学, 2021, 33(3): 221-225.
[11] 朱瑶, 韦意娜, 孙畅, 何寒青. 新型冠状病毒肺炎疫苗研究进展[J]. 预防医学, 2021, 33(2): 143-148.
[12] 陈松华. 世界卫生组织关于新冠肺炎流行期间的结核病防控意见[J]. 预防医学, 2021, 33(11): 1187-1188.
[13] 季巧英, 陶桃, 邱理杨, 叶先明, 董升草, 夏永玲, 吴振宇, 陈秀英. 丽水市首起新型冠状病毒肺炎聚集性疫情调查[J]. 预防医学, 2021, 33(1): 72-74.
[14] 钟若曦, 屠鸿薇, 康敏, 李艳, 刘勇鹰, 郭丽丽, 曾尧, 宋铁, 黄琼. 广东省居民新型冠状病毒肺炎相关知识调查[J]. 预防医学, 2021, 33(1): 91-93.
[15] 陈橙, 夏云丽, 孙亚军, 雷鹏, 肖伦. 九龙坡区新型冠状病毒肺炎病例密切接触者特征分析[J]. 预防医学, 2020, 32(9): 882-885.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed