Please wait a minute...
文章检索
预防医学  2026, Vol. 38 Issue (1): 10-14    DOI: 10.19485/j.cnki.issn2096-5087.2026.01.002
  论著 本期目录 | 过刊浏览 | 高级检索 |
浙江省发热伴血小板减少综合征流行特征及影响因素分析
吕婧1, 徐欣颖1, 乔颖异1, 石兴龙1, 岳芳1, 刘营2, 程传龙1, 张宇琦1, 孙继民2, 李秀君1
1.山东大学齐鲁医学院公共卫生学院,山东 济南 250012;
2.浙江省疾病预防控制中心,浙江 杭州 310051
Epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome in Zhejiang Province
LÜ Jing1, XU Xinying1, QIAO Yingyi1, SHI Xinglong1, YUE Fang1, LIU Ying2, CHENG Chuanlong1, ZHANG Yuqi1, SUN Jimin2, LI Xiujun1
1. School of Public Health, Shandong University Cheeloo College of Medicine, Jinan, Shandong 250012, China;
2. Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
全文: PDF(945 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 分析2019—2023年浙江省发热伴血小板减少综合征(SFTS)流行特征及影响因素,为加强SFTS防控提供参考。方法 通过中国疾病预防控制信息系统传染病报告信息管理系统收集2019—2023年浙江省SFTS实验室确诊病例资料,分别通过第五代欧洲中期天气预报中心、地理空间数据云和浙江省统计年鉴收集同期气象、地理环境和社会经济等资料。采用描述性流行病学方法分析2019—2023年SFTS流行特征,构建贝叶斯时空模型分析SFTS发病的影响因素。结果 2019—2023年浙江省累计报告SFTS病例578例,年均发病率为0.23/10万。5—7月为高发期,占52.60%;男性309例,女性269例,男女比为1.15∶1;以50~<80岁、农民和农村地区为主,分别占82.53%、77.34%和75.43%。台州市和绍兴市SFTS病例数较多,绍兴市和舟山市SFTS年均发病率较高。贝叶斯时空交互模型拟合优度较好,结果显示,平均温度(RR=1.626,95%CI:1.111~2.378)和平均风速(RR=1.814,95%CI:1.321~2.492)与SFTS发病风险呈正相关,海拔(RR=0.432,95%CI:0.230~0.829)和人口密度(RR=0.443,95%CI:0.207~0.964)与SFTS发病风险呈负相关。结论 浙江省SFTS 5—7月高发,中老年人和农民是高发人群,台州市、绍兴市和舟山市为高发地区;平均温度、平均风速、海拔和人口密度均可影响SFTS发病风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕婧
徐欣颖
乔颖异
石兴龙
岳芳
刘营
程传龙
张宇琦
孙继民
李秀君
关键词 发热伴血小板减少综合征流行特征贝叶斯时空交互模型影响因素    
AbstractObjective To analyze the epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome (SFTS) in Zhejiang Province from 2019 to 2023, so as to provide the reference for strengthening SFTS prevention and control. Methods Data on laboratory-confirmed SFTS cases in Zhejiang Province from 2019 to 2023 were collected through the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System. Meteorological data, geographic environment and socioeconomic factors during the same period were collected from the fifth-generation European Centre for Medium-Range Weather Forecasts, Geospatial Data Cloud, and Zhejiang Statistical Yearbook, respectively. Descriptive epidemiological methods were used to analyze the epidemiological characteristics of SFTS from 2019 to 2023, and a Bayesian spatio-temporal model was constructed to analyze the influencing factors of SFTS incidence. Results A total of 578 SFTS cases were reported in Zhejiang Province from 2019 to 2023, with an annual average incidence of 0.23/105. The peak period was from May to July, accounting for 52.60%. There were 309 males and 269 females, with a male-to-female ratio of 1.15∶1. The cases were mainly aged 50-<80 years, farmers, and in rural areas, accounting for 82.53%, 77.34%, and 75.43%, respectively. Taizhou City and Shaoxing City reported more SFTS cases, while Shaoxing City and Zhoushan City had higher annual average incidences of SFTS. The Bayesian spatio-temporal interaction model showed good goodness of fit. The results showed that mean temperature (RR=1.626, 95%CI: 1.111-2.378) and mean wind speed (RR=1.814, 95%CI: 1.321-2.492) were positively correlated with SFTS risk, while altitude (RR=0.432, 95%CI: 0.230-0.829) and population density (RR=0.443, 95%CI: 0.207-0.964) were negatively correlated with SFTS risk. Conclusions SFTS in Zhejiang Province peaks from May to July. Middle-aged and elderly people and farmers are high-risk populations. Taizhou City, Shaoxing City, and Zhoushan City are high-incidence areas. Mean temperature, mean wind speed, altitude, and population density can all affect the risk of SFTS incidence.
Key wordssevere fever with thrombocytopenia syndrome    epidemiological characteristics    bayesian spatio-temporal model    influence factor
收稿日期: 2025-09-25      修回日期: 2026-01-05      出版日期: 2026-01-10
中图分类号:  R183.5  
基金资助:浙江省科技计划项目(2025C02186)
作者简介: 吕婧,硕士研究生在读,公共卫生专业
通信作者: 孙继民,E-mail:jmsun@cdc.zj.cn   
引用本文:   
吕婧, 徐欣颖, 乔颖异, 石兴龙, 岳芳, 刘营, 程传龙, 张宇琦, 孙继民, 李秀君. 浙江省发热伴血小板减少综合征流行特征及影响因素分析[J]. 预防医学, 2026, 38(1): 10-14.
LÜ Jing, XU Xinying, QIAO Yingyi, SHI Xinglong, YUE Fang, LIU Ying, CHENG Chuanlong, ZHANG Yuqi, SUN Jimin, LI Xiujun. Epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome in Zhejiang Province. Preventive Medicine, 2026, 38(1): 10-14.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2026.01.002      或      https://www.zjyfyxzz.com/CN/Y2026/V38/I1/10
[1] YU X J,LIANG M F,ZHANG S Y,et al.Fever with thrombocytopenia associated with a novel bunyavirus in China[J].N Engl J Med,2011,364(16):1523-1532.
[2] 牛文静,吴泓晓,陈志海.大别班达病毒的传播途径研究进展[J].病毒学报,2025,41(2):600-607.
[3] XU A L,XUE H,LI Y,et al.Comprehensive meta-analysis of severe fever with thrombocytopenia syndrome virus infections in humans,vertebrate hosts and questing ticks[J/OL].Parasit Vectors,2024,17(1)[2026-01-05].https://doi.org/10.1186/s13071-024-06341-2.
[4] CHU N,LU W H,CHU X J,et al.Epidemiological and etiological investigation of a rare family cluster caused by severe fever with thrombocytopenia syndrome in Anhui Province in2023[J/OL].Virol J,2025,22(1)[2026-01-05].https://doi.org/10.1186/s12985-025-02665-2.
[5] 胡立芬,龚磊,李春辉,等.发热伴血小板减少综合征感染防控专家共识[J].中华疾病控制杂志,2024,28(6):621-628.
[6] MEHAND M S,MILLETT P,AL-SHORBAJI F,et al.World health organization methodology to prioritize emerging infectious diseases in need of research and development[J/OL].Emerg Infect Dis,2018,24(9)[2026-01-05].https://doi.org/10.3201/eid2409.171427.
[7] 陈秋兰,朱曼桐,陈宁,等.2011—2021年全国发热伴血小板减少综合征流行特征分析[J].中华流行病学杂志,2022,43(6):852-859.
[8] WU H C,WU C,LU Q B,et al.Spatial-temporal characteristics of severe fever with thrombocytopenia syndrome and the relationship with meteorological factors from2011 to 2018 in Zhejiang Province,China[J/OL].PLoS Negl Trop Dis,2020,14(4)[2026-01-05].https://doi.org/10.1371/journal.pntd.0008186.
[9] WANG Y D,ZHENG H Q,WANG Y L,et al.Spatiotemporal distribution and ecological factors of brucellosis among children from2016 to 2020 in Inner Mongolia,China[J/OL].BMC Infect Dis,2024,24(1)[2026-01-05].https://doi.org/10.1371/10.1186/s12879-024-09992-9.
[10] 吴北平,杨典,王劲峰,等.利用贝叶斯时空模型分析山东省手足口病时空变化及影响因素[J].地球信息科学学报,2016,18(12):1645-1652.
[11] KIM H G,JUNG M,LEE D H.Seasonal activity of Haemaphysalis longicornis and Haemaphysalis flava(Acari:Ixodida),vectors of severe fever with thrombocytopenia syndrome(SFTS)virus,and their SFTS virus harboring rates in Gyeonggi Province,South Korea[J].Exp Appl Acarol,2022,87(1):97-108.
[12] 施旭光,孙继民,刘营,等.2015—2019年浙江省发热伴血小板减少综合征流行特征分析[J].疾病监测,2021,36(5):431-435.
[13] WANG Z J,YANG S T,LUO L,et al.Epidemiological characteristics of severe fever with thrombocytopenia syndrome and its relationship with meteorological factors in Liaoning Province,China[J/OL].Parasit Vectors,2022,15(1)[2026-01-05].https://doi.org/10.1186/s13071-022-05395-4.
[14] SUN J M,LU L,WU H X,et al.The changing epidemiological characteristics of severe fever with thrombocytopenia syndrome in China,2011-2016[J/OL].Sci Rep,2017,7(1)[2026-01-05].https://doi.org/10.1038/s41598-017-08042-6.
[15] 杜珊珊,师悦,陈曦,等.2010—2023年我国发热伴血小板减少综合征流行特征分析[J].中国血吸虫病防治杂志(中英文),2025,37(4):371-379.
[16] LIANG S Y,XIE W,LI Z F,et al.Analysis of fatal cases of severe fever with thrombocytopenia syndrome in Jiangsu Province,China,between 2011 and 2022:a retrospective study[J/OL].Front Public Health,2023,11[2026-01-05].https://doi.org/10.3389/fpubh.2023.1076226.
[17] ADEPOJU O A,AFINOWI O A,TAUHEED A M,et al.Multisectoral perspectives on global warming and vector-borne diseases:a focus on southern Europe[J].Curr Trop Med Rep,2023,10(2):47-70.
[18] DU Z H,WANG Z Q,LIU Y X,et al.Ecological niche modeling for predicting the potential risk areas of severe fever with thrombocytopenia syndrome[J].Int J Infect Dis,2014,26:1-8.
[19] DUAN Q,TIAN X Y,PANG B,et al.Spatiotemporal distribution and environmental influences of severe fever with thrombocytopenia syndrome in Shandong Province,China[J/OL].BMC Infect Dis,2023,23(1)[2026-01-05].https://doi.org/10.1186/s12879-023-08899-1.
[20] MILHOLLAND M T,EISEN L,NADOLNY R M,et al.Surveillance of ticks and tick-borne pathogens in suburban natural habitats of central Maryland[J].J Med Entomol,2021,58(3):1352-1362.
[21] SUN J M,WU H X,LU L,et al.Factors associated with spatial distribution of severe fever with thrombocytopenia syndrome[J/OL].Sci Total Environ,2021,750[2026-01-05].https://doi.org/10.1016/j.scitotenv.2020.141522.
[22] QU R R,LIU Y,CHEN M S,et al.Epidemiological characteristics and risk distribution prediction of severe fever with thrombocytopenia syndrome in Zhejiang Province,China[J/OL].PLoS Negl Trop Dis,2025,19(4)[2026-01-05].https://doi.org/10.1371/journal.pntd.0013066.
[1] 吴成慧, 彭艳红, 张可, 朱维晔, 邓亮, 谭玲玲, 瞿丹丹, 米秋香. 中青年2型糖尿病患者益处发现的影响因素分析[J]. 预防医学, 2026, 38(1): 31-35.
[2] 夏文玲, 高强, 李阳, 蔡奔, 万春雨, 崔志贞, 张正, 潘恩春. 2011—2024年淮安市发热伴血小板减少综合征流行特征和时空聚集性分析[J]. 预防医学, 2026, 38(1): 55-59,65.
[3] 方叶冬, 孙芳红, 邓建凯, 邱芳芳, 王晓臻, 周祖木. 瑞安市成年居民慢性病危险因素聚类分析[J]. 预防医学, 2026, 38(1): 60-65.
[4] 吴卉, 徐秋敏, 任治兴, 阴媛, 翟前前, 姚来顺. 2020—2024年长春市水痘流行特征和时空聚集性分析[J]. 预防医学, 2026, 38(1): 66-70,74.
[5] 徐光明, 张震, 叶小红. 2015—2024年临海市新报告HIV/AIDS病例晚发现及影响因素分析[J]. 预防医学, 2026, 38(1): 71-74.
[6] 夏子淇, 陈晴晴, 高四海, 吴矛矛. 温州市中小学生营养健康知识调查[J]. 预防医学, 2026, 38(1): 98-101,106.
[7] 陈慧, 苗姗姗, 刘宪峰, 张慧. 新疆生产建设兵团中小学生龋齿现况调查[J]. 预防医学, 2026, 38(1): 102-106.
[8] 陶桃, 张海芳, 凡鹏飞, 李秋华, 陈晓蕾. 丽水市老年肺结核患者治疗转归的影响因素分析[J]. 预防医学, 2025, 37(9): 892-896,902.
[9] 徐艳平, 闫晓彤, 姚丁铭, 徐越, 张雪海, 孙洁, 徐锦杭. 浙江省中老年人肺炎疫苗接种意愿的影响因素研究[J]. 预防医学, 2025, 37(9): 881-885.
[10] 姜艳, 李锦成, 许纯, 杨科佼, 杨文彬, 徐胜. 扬州市MSM人群艾滋病非职业暴露后预防知晓率调查[J]. 预防医学, 2025, 37(9): 903-906,912.
[11] 凌红, 汪娜, 宋琴, 徐昊. 2009—2023年黄浦区肺结核流行特征和时空聚集性分析[J]. 预防医学, 2025, 37(9): 937-940.
[12] 张俊杰, 罗超, 姜立坤, 张慧颖. 2015—2024年哈尔滨市百日咳流行特征分析[J]. 预防医学, 2025, 37(9): 941-944.
[13] 魏志云, 罗小飞, 于颖洁, 贺亚琴, 杨倩, 窦强. 山西省布鲁氏菌病流行特征与空间聚集性分析[J]. 预防医学, 2025, 37(8): 842-845.
[14] 翟羽佳, 章涛, 古雪, 徐乐, 吴梦娜, 林君芬, 吴晨. 社区老年人认知衰弱现况调查[J]. 预防医学, 2025, 37(8): 762-766,772.
[15] 苏德华, 陈向阳, 李君, 赵丽娜, 张鹤美, 朱婷婷, 胡文雪, 赖江宜. 温州市新报告HIV/AIDS病例抗病毒治疗及时性分析[J]. 预防医学, 2025, 37(8): 804-808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed