Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (9): 919-922    DOI: 10.19485/j.cnki.issn2096-5087.2022.09.011
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
急诊重症监护病房住院患者医院感染的预测模型研究
何亚盛1, 张红霞2, 倪银1, 朱越燕1, 彭敏1, 杨丹红3
1.浙江省人民医院(杭州医学院附属人民医院)医院感染管理部,浙江 杭州 310014;
2.浙江省卫生财会管理中心,浙江 杭州 310002;
3.浙江省人民医院(杭州医学院附属人民医院),浙江 杭州 310014
A model to predict nosocomial infections among inpatients in emergency intensive care units
HE Yasheng1, ZHANG Hongxia2, NI Yin1, ZHU Yueyan1, PENG Min1, YANG Danhong3
1. Department of Nosocomial Infection Management, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China;
2. Zhejiang Health Finance and Accounting Management Center, Hangzhou, Zhejiang 310002, China;
3. Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
全文: PDF(878 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 构建急诊重症监护病房(EICU)医院感染的预测模型,为医院感染患者的早期识别及干预提供依据。方法 收集2017—2020年某大型三甲综合医院EICU住院患者的医院感染相关资料。以2017—2019年数据作为训练集,建立logistic回归预测模型,并采用Hosmer-Lemeshow检验评价模型拟合效果;以2020年数据作为测试集评价模型的外部验证能力。采用受试者操作特征(ROC)曲线分析模型的预测价值。结果 纳入EICU住院患者1 546例,发生医院感染111例,医院感染率为7.18%。多因素logistic回归分析结果显示,住院时间>7 d(OR=21.845,95%CI:7.901~60.398)、使用呼吸机(OR=3.405,95%CI:1.335~8.682)和手术(OR=1.854,95%CI:1.121~3.064)是发生医院感染的危险因素。预测模型为p=ey/(1+ey),y=-6.105+(3.084×住院时间)+(1.225×使用呼吸机)+(0.617×手术)。训练集和测试集的ROC曲线下面积分别为0.806(95%CI:0.774~0.838)和0.723(95%CI:0.623~0.823)。将训练集拟合模型的截断值0.065代入测试集,获得灵敏度为0.739,特异度为0.642。结论 本研究建立的EICU住院患者医院感染预测模型准确性较好,对于医院感染高危患者具有一定的预测价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何亚盛
张红霞
倪银
朱越燕
彭敏
杨丹红
关键词 急诊重症监护病房医院感染危险因素预测模型    
AbstractObjective To create a model to predict nosocomial infections in emergency intensive care units (EICU), so as to provide insights into early identification and interventions among patients with nosocomial infections. Methods All nosocomial infections were collected from patients hospitalized in the EICU of a large tertiary hospital from 2017 to 2020. The 2017-2019 data were selected as the training set to create a logistic regression model, and the fitting effectiveness of the predictive model was evaluated using Hosmer-Lemeshow test. The 2020 data were selected as the test set to evaluate the external validation of the predictive model. In addition, the value of the model for prediction of nosocomial infections was examined using the receiver operating characteristic (ROC) curve analysis. Results Totally 1 546 inpatients in EICU were enrolled, and the prevalence of nosocomial infections was 7.18%. Multivariable logistic regression analysis identified hospital stay duration of >7 days (OR=21.845, 95%CI: 7.901-60.398), use of ventilators (OR=3.405, 95%CI: 1.335-8.682), and surgery (OR=1.854, 95%CI: 1.121-3.064) as risk factors of nosocomial infections. The predictive model was p=ey/(1+ey), y=-6.105+(3.084×duration of hospital stay)+(1.225×use of ventilators)+(0.617×surgery). The area under ROC curve was 0.806 (95%CI: 0.774-0.838) for the training set and 0.723 (95%CI: 0.623-0.823) for the test set, and if the 0.065 cut-off of the predictive model created by the training set was included in the test set, the predictive value yield a 0.739 sensitivity and 0.642 specificity for prediction of nosocomial infections among patients hospitalized in EICU. Conclusion The created predictive model for nosocomial infections among patients hospitalized in EICU presents a high accuracy, which shows a satisfactory predictive value for high-risk nosocomial infections.
Key wordsemergency intensive care unit    nosocomial infection    risk factor    predictive model
收稿日期: 2022-04-30      修回日期: 2022-06-24     
中图分类号:  R195  
基金资助:浙江省软科学研究计划项目(2018C25021)
通信作者: 杨丹红,E-mail:ydh-11@163.com   
作者简介: 何亚盛,硕士,助理统计师,主要从事医院感染控制工作
引用本文:   
何亚盛, 张红霞, 倪银, 朱越燕, 彭敏, 杨丹红. 急诊重症监护病房住院患者医院感染的预测模型研究[J]. 预防医学, 2022, 34(9): 919-922.
HE Yasheng, ZHANG Hongxia, NI Yin, ZHU Yueyan, PENG Min, YANG Danhong. A model to predict nosocomial infections among inpatients in emergency intensive care units. Preventive Medicine, 2022, 34(9): 919-922.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.09.011      或      http://www.zjyfyxzz.com/CN/Y2022/V34/I9/919
[1] 张敏璐,刘菁,张静,等.“网底式”管理在急诊重症监护病房老年患者器械相关感染防控中的效果研究[J].华西医学,2022,37(3):357-362.
ZHANG M L,LIU J,ZHANG J,et al.Effect of “net bottom” management in the prevention and control of device-associated infections in elderly patients in emergency intensive care unit[J].West China Med J,2022,37(3):357-362.
[2] COMAS-GARCÍA A,AGUILERA-MARTÍNEZ J I,ESCALANTE-PADRÓN F J,et al.Clinical impact and direct costs of nosocomial respiratory syncytial virus infections in the neonatal intensive care unit[J].Am J Infect Control,2020,48(9):982-986.
[3] 孙菲菲,楼晓红,虞洪斌.放射治疗患者医院感染的影响因素分析[J].预防医学,2022,34(5):515-518.
SUN F F,LOU X H,YU H B.Influencing factors of nosocomial infections among radiotherapy patients[J].Prev Med,2022,34(5):515-518.
[4] ZHAO X,WANG L,WEI N,et al.Risk factors of health care-associated infection in elderly patients:a retrospective cohort study performed at a tertiary hospital in China[J/OL].BMC Geriatr,2019,19(1)[2022-06-24].https://doi.org/10.1186/s12877-019-1208-x.
[5] YAMAKAWA K,TASAKI O,FUKUYAMA M,et al.Assessment of risk factors related to healthcare-associated methicillin-resistant Staphylococcus aureus infection at patient admission to an intensive care unit in Japan[J/OL].BMC Infect Dis,2011,11[2022-06-24].http://www.biomedcentral.com/1471-2334/11/303.
[6] PATTY C M,SANDIDGE-RENTERIA A,ORIQUE S,et al.Incidence and predictors of nonventilator hospital-acquired pneumonia in a community hospital[J].J Nurs Care Qual,2021,36(1):74-78.
[7] 中华人民共和国卫生部.医院感染诊断标准(试行)[J].中华医学杂志,2001,81(5):61-67.
Ministry of Health of the people's Republic of China.Diagnostic criteria for nosocomial infection(proposed)[J].Chin J Med,2001,81(5):61-67.
[8] 刘红秀,王静喆,杨晶,等.EICU医院感染患者死亡危险因素与干预分析[J].中华医院感染学杂志,2016,26(7):1492-1494.
LIU H X,WANG J Z,YANG J,et al.Risk factors and intervention of deaths among EICU patients with nosocomial infections[J].Chin J Nosocomial Infection,2016,26(7):1492-1494.
[9] 张辅铭. 从最大似然原理拓宽logistic多元回归应用的探讨[J].中国卫生统计,1995,22(2):40-42.
ZHANG F M.Discussion on broadening the application of multivariate logistic regression based on the principle of maximum likelihood[J].Chin J Health Stat,1995,22(2):40-42.
[10] 柯小云,童金英,许继涛,等.老年脑梗死长期卧床患者医院感染细菌学及其风险预测模型[J].中华医院感染学杂志,2022,32(7):994-998.
KE X Y,TONG J Y,XU J T,et al.Bacteriology of nosocomial infections and prediction model in elderly long-term bedridden patients with cerebral infarction[J].Chin J Nosocomiol,2022,32(7):994-998.
[11] 姬海燕,王红霞,窦学梅.综合医院重症监护病房医院感染目标性监测分析[J].天津护理,2020,28(2):205-207.
JI H Y,WANG H X,DOU X M.Analysis of targeted surveillance of nosocomial infection in intensive care unit of general hospital[J].Tianjin J Nurs,2020,28(2):205-207.
[12] YUE D,SONG C,ZHANG B,et al.Hospital-wide comparison of health care-associated infection among 8 intensive care units:a retrospective analysis for 2010-2015[J].Am J Infect Control,2017,45(1):e7-e13.
[13] 储文杰,金凯玲,林凯,等.杭州市某医院住院治疗患者医院感染现患率调查[J].预防医学,2018,30(8):834-836,840.
CHU W J,JIN K L,LIN K,et al.Investigation on the prevalence of nosocomial infection among hospitalized patients in a hospital in Hangzhou[J].Prev Med,2018,30(8):834-836,840.
[14] ZHOU S K,LE H N,LUU K,et al.Deep reinforcement learning in medical imaging:a literature review[J/OL].Med Image Anal,2021,73[2022-06-24].https://doi.org/10.1016/j.media.2021.102193.
[15] 章涛,官海滨,李傅冬,等.应用Elman神经网络建立流感样病例预测模型[J].预防医学,2019,31(2):113-118.
ZHANG T,GUAN H B,LI F D,et al.Modeling of influenza-like illness prediction based on Elman neural network[J].Prev Med,2019,31(2):113-118.
[1] 贾铭, 彭菊意, 刘星宇, 刘宇丹, 赵华. 心血管代谢性共病危险因素的Meta分析[J]. 预防医学, 2023, 35(9): 790-795.
[2] 张媛, 韩正风, 马艳. 老年人群肌少症危险因素的病例对照研究[J]. 预防医学, 2023, 35(6): 461-464.
[3] 丁承辉, 吴萃, 薛琨, 励晓红, 万金豹, 陈秋艳, 朱潇翔. 宝山区糖尿病高危人群筛查结果分析[J]. 预防医学, 2023, 35(6): 509-513.
[4] 黄文, 汤佳良, 陈康康, 黄敏钢, 陈奇峰. 绍兴市心血管疾病高危人群危险因素聚集分析[J]. 预防医学, 2023, 35(4): 298-302,330.
[5] 郁小红, 钱棪梅, 周晨洁, 马越, 唐艳超, 邹玲莉. 应用TreeNet算法建立原发性高血压早期预测模型[J]. 预防医学, 2022, 34(9): 923-927.
[6] 罗环, 梁婧, 张非若, 贾宁, 王忠旭, 王如刚. 北京市重型汽车零部件生产企业工人职业性肌肉骨骼疾患调查[J]. 预防医学, 2022, 34(8): 809-815.
[7] 张洁, 费方荣, 胡如英, 龚巍巍, 钟节鸣. 浙江省慢性病主要危险因素的归因疾病负担研究[J]. 预防医学, 2022, 34(6): 541-546,554.
[8] 孙菲菲, 楼晓红, 虞洪斌. 放射治疗患者医院感染的影响因素分析[J]. 预防医学, 2022, 34(5): 515-518,529.
[9] 张娆, 陈映, 钱叶红, 胡守玮, 褚庆霞. 基层医疗机构医务人员医院感染防控知识和行为调查[J]. 预防医学, 2022, 34(4): 424-428.
[10] 王迎丹, 高春洁, 王蕾. 5种时间序列模型预测肺结核发病比较[J]. 预防医学, 2022, 34(12): 1194-1200.
[11] 陈敏超, 吴春玲, 周建英. 慢性阻塞性肺疾病合并侵袭性肺曲霉病的危险因素研究[J]. 预防医学, 2022, 34(10): 1002-1006.
[12] 陈雷, 陆元英, 张晓. 电动自行车道路交通伤害危险因素的病例对照研究[J]. 预防医学, 2022, 34(10): 990-995.
[13] 韩雅斌, 陈向宇, 钟节鸣, 方乐, 梁明斌, 谢开婿, 张晓怡, 曹元, 陆凤, 徐春晓, 林静静. 桐乡市老年人群心血管疾病危险因素暴露及聚集分析[J]. 预防医学, 2021, 33(8): 812-814.
[14] 马丹, 陈戈, 崔育平, 王坤鹏, 张少新, 尹锡玲, 李德云. 图木舒克市居民超重和肥胖流行现况调查[J]. 预防医学, 2021, 33(7): 718-721.
[15] 黄恩妙, 王翠玲, 吕海英. 中山市1起小学水痘暴发疫情调查[J]. 预防医学, 2021, 33(4): 391-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed