Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (1): 96-101    DOI: 10.19485/j.cnki.issn2096-5087.2025.01.021
  实验技术 本期目录 | 过刊浏览 | 高级检索 |
煤矿粉尘对大鼠肺功能的影响研究
刘洋, 李萌, 卢丽媛, 王茹, 杨鹤, 张慧芳
山西医科大学公共卫生学院,山西 太原 030001
Effects of coal mine dust on lung function in rats
LIU Yang, LI Meng, LU Liyuan, WANG Ru, YANG He, ZHANG Huifang
School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
全文: PDF(890 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 探讨煤矿粉尘对大鼠肺功能的影响,为早期防治煤工尘肺提供依据。方法 SPF级8周龄雄性SD大鼠72只随机纳入煤尘组、煤硅尘组、硅尘组和对照组,前3组采用非暴露式气管滴注法分别给予1 mL相应的粉尘悬浊液缓慢注入肺,对照组采用同样方法给予1 mL生理盐水。染尘1、3、6个月后检测大鼠呼吸频率(f)、用力肺活量(FVC)、最大呼气峰流速(PEF)和动态肺顺应性(Cdyn)。取肺组织,采用活性氧(ROS)酶联免疫吸附测定试剂盒、腺苷三磷酸(ATP)含量测定试剂盒测定ROS、ATP含量;采用实时荧光定量PCR法检测过氧化物酶体增殖物激活受体γ辅激活物1α(PGC-1α)和线粒体转录因子A(TFAM)mRNA相对表达量;采用免疫印迹法检测PGC-1α和TFAM蛋白相对表达量。结果 染尘类型和染尘时间对f不存在交互作用(P>0.05),对FVC、PEF和Cdyn存在交互作用(均P<0.05);染尘6个月后,与对照组比较,硅尘组大鼠f升高,煤硅尘组、硅尘组大鼠FVC、PEF降低,煤尘组、煤硅尘组和硅尘组大鼠Cdyn降低(均P<0.05)。染尘类型和染尘时间对ROS、ATP含量,PGC-1α、TFAM mRNA相对表达量和蛋白相对表达量存在交互作用(均P<0.05);染尘3、6个月后,与对照组比较,煤尘组、煤硅尘组和硅尘组大鼠肺组织ROS含量升高,ATP含量降低,PGC-1α、TFAM mRNA相对表达量和蛋白相对表达量降低(均P<0.05)。结论 不同类型煤矿粉尘致大鼠肺功能损伤与PGC-1α介导的线粒体生物发生障碍,引起ROS含量升高、ATP含量和TFAM水平降低有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洋
李萌
卢丽媛
王茹
杨鹤
张慧芳
关键词 煤尘硅尘肺功能线粒体生物发生    
AbstractObjective To explore the impacts of coal mine dust on lung function in rats, so as to provide the basis for the early prevention and treatment of coal worker's pneumoconiosis. Methods Seventy-two SPF-grade 8-week-old male Sprague-Dawley rats were randomly divided into the coal dust group, the coal-silica dust group, the silica dust group and the control group. The rats in the first three groups of rats were administered 1 mL corresponding dust suspension into the lungs using non-exposure tracheal instillation, while the rats in the control group were administered 1 mL normal saline. Respiratory rate (f), forced vital capacity (FVC), peak expiratory flow (PEF) and dynamic pulmonary compliance (Cdyn) were measured at 1, 3 and 6 months after dust exposure. Lung tissues were collected to measure reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels using corresponding ELISA kits and ATP assay kits, respectively. The relative mRNA expressions of peroxisome proliferators-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial transcription factor A (TFAM) were detected using real-time fluorescent quantitative polymerase chain reaction assay. The relative protein expressions of PGC-1α and TFAM were detected using Western blotting. Results There was no interaction between dust type and exposure duration on f (P>0.05), but there were interactions on FVC, PEF and Cdyn (all P<0.05). Compared with the control group at 6 months after dust exposure, the f of the rats in the silica dust group were increased, while the FVC and PEF of the rats in the coal-silica dust and silica dust groups were decreased, and Cdyn of the rats in the coal dust, coal-silica dust and silica dust groups were decreased (all P<0.05). There were interactions between dust type and exposure duration on ROS and ATP levels, the relative mRNA and protein expressions of PGC-1α and TFAM (all P<0.05). Compared with the control group at 3 and 6 months after dust exposure, the ROS levels in the rats in the coal dust, coal-silica dust and silica dust groups were increased, while the ATP levels, the relative mRNA and protein expressions of PGC-1α and TFAM were decreased (all P<0.05). Conclusion The lung function impairment in rats caused by different types of coal mine dust is related to PGC-1α-mediated mitochondrial biogenesis dysfunction, which leads to increased ROS levels, decreased ATP and TFAM levels.
Key wordscoal dust    silica dust    lung function    mitochondrial biogenesis
收稿日期: 2024-07-24      修回日期: 2024-11-25      出版日期: 2025-01-10
中图分类号:  R135.2  
基金资助:国家卫生健康委员会尘肺病(山西)重点实验室项目(2020-PT320-005)
作者简介: 刘洋,硕士研究生在读,公共卫生专业
通信作者: 张慧芳,E-mail:zhf2008y@163.com   
引用本文:   
刘洋, 李萌, 卢丽媛, 王茹, 杨鹤, 张慧芳. 煤矿粉尘对大鼠肺功能的影响研究[J]. 预防医学, 2025, 37(1): 96-101.
LIU Yang, LI Meng, LU Liyuan, WANG Ru, YANG He, ZHANG Huifang. Effects of coal mine dust on lung function in rats. Preventive Medicine, 2025, 37(1): 96-101.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.01.021      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I1/96
[1] ZOSKY G R,HOY R F,SILVERSTONE E J,et al.Coal workers' pneumoconiosis:an Australian perspective[J].Med J Aust,2016,204(11):414-418.
[2] LEUNG C C,YU I T,CHEN W.Silicosis[J].Lancet,2012,379(9830):2008-2018.
[3] VAN DER VLIET A,JANSSEN-HEININGER Y M W,ANATHY V.Oxidative stress in chronic lung disease:from mitochondrial dysfunction to dysregulated redox signaling[J].Mol Aspects Med,2018,63:59-69.
[4] CARDANHO-RAMOS C,MORAIS V A.Mitochondrial biogenesis in neurons:how and where[J/OL].Int J Mol Sci,2021,22[2024-11-25].https://pubmed.ncbi.nlm.nih.gov/34884861.DOI:10.3390/ijms222313059.
[5] CHEN Y L,YANG M,HUANG W X,et al.Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses[J].Circ Res,2019,125(12):1087-1102.
[6] MU M,LI B,ZOU Y J,et al.Coal dust exposure triggers heterogeneity of transcriptional profiles in mouse pneumoconiosis and vitamin D remedies[J].Part Fibre Toxicol,2022,19(1):1-21.
[7] 孙宇涵. 不同类型煤矿粉尘致肺纤维化中MK2/NF-κB/Lin28/let-7e/IL-6信号通路的改变[D].太原:山西医科大学,2023.
SUN Y H.The alteration of MK2/NF-κB/Lin28/let-7e/IL-6 signaling pathway in different types of coal mine dustinduced pulmonary fibrosis[D].Taiyuan:Shanxi Medical University,2023.(in Chinese)
[8] 丁晓慧,卢炀,郝嘉瑞,等.大鼠亚慢性铝暴露N6-甲基腺苷甲基化和N6-甲基腺苷RNA结合蛋白1分析[J].预防医学,2024,36(9):825-828.
DING X H,LU Y,HAO J R,et al.Analysis of N6-methyladenosine methylation and N6-methyladenosine RNA binding protein 1 in rats with subchronic aluminum exposure[J].China Prev Med J,2024,36(9):825-828.(in Chinese)
[9] WEISSMAN D N.Progressive massive fibrosis:an overview of the recent literature[J/OL].Pharmacol Ther,2022[2024-11-25].https://pubmed.ncbi.nlm.nih.gov/35732247.DOI:10.1016/j.pharmthera.2022.108232.
[10] BLACKLEY D J,LANEY A S,HALLDIN C N,et al.Profusion of opacities in simple coal worker's pneumoconiosis is associated with reduced lung function[J].Chest,2015,148(5):1293-1299.
[11] 乔俊华. 大鼠煤工尘肺动物模型的研究[D].长春:吉林大学,2009.
QIAO J H.The study of coal worker's pneumoconiosis(CWP)rat model[D].Changchun:Jilin University,2009.(in Chinese)
[12] 安志远,庞宝森.Wistar大鼠肺功能参考值范围测定[J].中国实验动物学报,2013,21(6):102-104.
AN Z Y,PANG B S.Assessment of normal reference range of lung function of Wistar rats[J].Acta Lab Anim Sci Sin,2013,21(6):102-104.(in Chinese)
[13] 袁扬,黄京慧,马国宣,等.大容量肺灌洗治疗煤工尘肺肺功能远期效果的观察——附90例报告[J].中国疗养医学,2009,18(8):677-679.
YUAN Y,HAUNG J H,MA G X,et al.Long-term therapeutic effects observation of large volume lung lavage on lung function of coal workers' pneumoconiosis[J].Chin J Convalescent Med,2009,18(8):677-679.(in Chinese)
[14] 高鸿,曹守明,余春晓,等.82例煤工尘肺患者肺通气功能分析[J].中国职业医学,2011,38(5):409-410.
GAO H,CAO S M,YU C X,et al.Analysis on lung function measurement in 82 patients with coal workers' pneumoconiosis[J].China Occup Med,2011,38(5):409-410.(in Chinese)
[15] GAO H X,SU Y,ZHANG A L,et al.MiR-34c-5p plays a protective role in chronic obstructive pulmonary disease via targeting CCL22[J].Exp Lung Res,2019,45(1/2):1-12.
[16] LIU X T,LU B,FU J L,et al.Amorphous silica nanoparticles induce inflammation via activation of NLRP3 inflammasome and HMGB1/TLR4/MYD88/NF-kb signaling pathway in HUVEC cells[J/OL].J Hazard Mater,2021,404[2024-11-25].https://pubmed.ncbi.nlm.nih.gov/33053467.DOI:10.1016/j.jhazmat.2020.124050.
[17] ADAMCAKOVA J,MOKRA D.New insights into pathomechanisms and treatment possibilities for lung silicosis[J/OL].Int J Mol Sci,2021,22[2024-11-25].https://pubmed.ncbi.nlm.nih.gov/33920534.DOI:10.3390/ijms22084162.
[18] KUMARI S,SINGH P,SINGH R.Repeated silica exposures lead to silicosis severity via PINK1/PARKIN mediated mitochondrial dysfunction in mice model[J/OL].Cell Signal,2024[2024-11-25].https://pubmed.ncbi.nlm.nih.gov/38944258.DOI:10.1016/
j.cellsig.2024.111272.
[19] ABU SHELBAYEH O,ARROUM T,MORRIS S,et al.PGC-1alpha is a master regulator of mitochondrial lifecycle and ROS stress response[J].Antioxidants(Basel),2023,12(5):1-24.
[20] NARALA V R,NARALA S R,AIYA SUBRAMANI P,et al.Role of mitochondria in inflammatory lung diseases[J].Front Pharmacol,2024,15:1-20.
[1] 陈飞荣, 莫小燕. 温岭市砂型铸造企业职业病危害调查[J]. 预防医学, 2024, 36(4): 338-341,344.
[2] 龚科米, 廖辉, 陈树昶, 刘卫艳, 徐珊珊, 吕烨, 伍丽, 徐虹. 杭州市老年人群肺功能状况调查[J]. 预防医学, 2023, 35(3): 246-249.
[3] 徐秋凉, 曹艺耀, 王鹏, 任鸿, 袁伟明, 李飞, 张美辨. 五种职业健康风险评估模型评估小型露天石料矿场硅尘危害比较[J]. 预防医学, 2021, 33(9): 873-876,883.
[4] 陆凤, 陈向宇, 赵鸣, 张洁, 钟节鸣, 胡如英. 社区慢性阻塞性肺疾病患者肺功能分级与综合评估[J]. 预防医学, 2021, 33(11): 1091-1096.
[5] 陶学芳, 邵银燕, 孙金军, 杨国彪. 基于症状的慢性阻塞性肺疾病筛查问卷诊断效果评价[J]. 预防医学, 2019, 31(7): 693-695.
[6] 冯霞, 蔡小琼. 慢性阻塞性肺疾病患者综合呼吸训练肺康复效果评价[J]. 预防医学, 2019, 31(7): 703-706.
[7] 李松明 ,张继先 ,孙震. 慢性阻塞性肺疾病急性加重患者接种流感疫苗和肺炎疫苗效果观察[J]. 预防医学, 2017, 29(5): 485-486.
[8] 王卫彪, 李岱, 滕鸿. 组蛋白去乙酰化酶2在慢性阻塞性肺疾病急性加重期诊疗中的意义[J]. 预防医学, 2016, 28(6): 553-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed