Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (11): 1103-1107,1112    DOI: 10.19485/j.cnki.issn2096-5087.2025.11.005
  体重管理与肥胖防控专题 本期目录 | 过刊浏览 | 高级检索 |
北仑区多学科综合体重管理干预效果评价
徐春霞, 丁亚君, 袁芸芸, 周亚春, 潘晓华, 张晶晶, 陈丽丽
宁波市北仑区人民医院,浙江 宁波 315800
Effects of a multidisciplinary integrated weight management intervention in Beilun District
XU Chunxia, Ding Yajun, YUAN Yunyun, ZHOU Yachun, PAN Xiaohua, ZHANG Jingjing, CHEN Lili
Beilun People's Hospital, Ningbo, Zhejiang 315800, China
全文: PDF(863 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 评估多学科综合体重管理干预效果,为制定超重肥胖干预措施提供参考。方法 选择2025年4—9月在宁波市北仑区人民医院健康管理中心参加减重活动的18~60岁超重肥胖居民为研究对象,分为对照组和干预组,对照组实施常规体重管理模式,干预组在常规体重管理模式基础上实施多学科综合体重管理模式,干预8周。干预前后通过体格检查和实验室检测收集体重、体质指数(BMI)、腰围、臀围、腰臀比、空腹血糖(FBG)、三酰甘油(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)和血压等资料。采用广义估计方程分析两组干预前后指标变化。结果 对照组241人,女性161人,占66.80%;年龄为(35.66±7.80)岁。干预组127人,女性86人,占67.72%;年龄为(36.80±7.05)岁。干预前两组年龄、性别、体重、BMI和腰臀比比较,差异无统计学意义(均P>0.05)。广义估计方程结果显示,两组体重、BMI、腰围和臀围的组间与时间存在交互作用(均P<0.05),干预组干预前后体重、BMI、腰围和臀围下降幅度大于对照组;两组FBG、TG、TC和LDL-C的组间与时间存在交互作用(均P<0.05),干预组干预前后FBG、TG、TC和LDL-C下降幅度大于对照组;两组腰臀比、HDL-C、收缩压和舒张压的组间与时间交互作用无统计学意义(均P>0.05)。干预后,对照组体重下降比例>10% 13人,占5.39%;干预组62人,占48.82%;干预组体重下降比例高于对照组(P<0.05)。结论 相较于常规体重管理模式,多学科综合体重管理可更好地改善超重肥胖居民体重相关指标和血糖、血脂,提升减重效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐春霞
丁亚君
袁芸芸
周亚春
潘晓华
张晶晶
陈丽丽
关键词 超重肥胖体重管理广义估计方程    
AbstractObjective To evaluate the effects of a multidisciplinary weight management intervention, so as to provide a reference for the formulation of overweight and obesity intervention measures. Methods From April to September 2025, overweight and obese residents aged 18-60 years who participated in a weight loss competition at the Health Management Center of Beilun People's Hospital in Ningbo City were selected as study subjects. They were divided into a control group and an intervention group. The control group received conventional weight management, while the intervention group received the multidisciplinary integrated weight management in addition to the conventional weight management, for a total intervention period of 8 weeks. Weight, body mass index (BMI), waist circumference, hip circumference, waist-to-hip ratio, fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and blood pressure were collected before and after the intervention through physical examinations and laboratory tests. The generalized estimating equations (GEE) method was employed to analyze the differences in indicators between the two groups before and after the intervention. Results The control group comprised 241 participants, including 161 females (66.80%), with a mean age of (35.66±7.80) years. The intervention group consisted of 127 participants, including 86 females (67.72%), with a mean age of (36.80±7.05) years. No statistically significant differences were observed between the two groups at baseline in terms of age, gender, weight, BMI, or waist-to-hip ratio (all P>0.05). Results from the GEE analysis indicated significant interactions between group and time for weight, BMI, waist circumference, and hip circumference (all P<0.05) with greater reductions in these parameters observed in the intervention group compared to the control group before and after the intervention. Similarly, significant interactions between group and time were observed for FBG, TG, TC, and LDL-C (all P<0.05), with the intervention group demonstrating larger decreases in these markers compared to the control group. However, no statistically significant interactions between group and time were observed for waist-to-hip ratio, HDL-C, systolic blood pressure, and diastolic blood pressure (all P>0.05). Following the intervention, a weight loss exceeding 10% was achieved by 13 participants (5.39%) in the control group and 62 participants (48.82%) in the intervention group. The proportion of individuals with a weight loss exceeding 10% was significantly higher in the intervention group compared to the control group (P<0.05). Conclusion Compared to conventional weight management, multidisciplinary integrated weight management demonstrated greater efficacy in improving weight-related indicators and blood glucose, blood lipids, and enhancing weight loss outcomes among overweight and obese residents.
Key wordsoverweight    obesity    weight management    generalized estimating equations
收稿日期: 2025-09-22      修回日期: 2025-10-28     
中图分类号:  R19  
作者简介: 徐春霞,硕士,主任医师,主要从事健康促进与教育工作
通信作者: 丁亚君,E-mail:zhouyachuncc@126.com   
引用本文:   
徐春霞, 丁亚君, 袁芸芸, 周亚春, 潘晓华, 张晶晶, 陈丽丽. 北仑区多学科综合体重管理干预效果评价[J]. 预防医学, 2025, 37(11): 1103-1107,1112.
XU Chunxia, Ding Yajun, YUAN Yunyun, ZHOU Yachun, PAN Xiaohua, ZHANG Jingjing, CHEN Lili. Effects of a multidisciplinary integrated weight management intervention in Beilun District. Preventive Medicine, 2025, 37(11): 1103-1107,1112.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.11.005      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I11/1103
[1] 中国营养学会肥胖防控分会,中国营养学会临床营养分会,中华预防医学会行为健康分会,等.中国居民肥胖防治专家共识[J].中国预防医学杂志,2022,23(5):321-339.
Chinese Nutrition Society Obesity Prevention and Control Section,Chinese Nutrition Society Clinical NutritionSection,Chinese Preventive Medicine Association Behavioral Health Section,et al.Expert consensus on obesity prevention and treatment in China[J].Chin Prev Med,2022,23(5):321-339.(in Chinese)
[2] 中国疾病预防控制中心,国家癌症中心,国家心血管病中心.中国居民营养与慢性病状况报告(2020年)[M].北京:人民卫生出版社,2022.
Chinese Center for Disease Control and Prevention,National Cancer Center,National Center for Cardiovascular Diseases.Report on the nutrition and chronic diseases status of Chinese residents 2020[M].Beijing:People's Medical Publishing House,2022.(in Chinese)
[3] TREMMEL M,GERDTHAM U G,NILSSON P M,et al.Economic burden of obesity:a systematic literature review[J/OL].Int J Environ Res Public Health,2017,14(4)[2025-10-28].https://doi.org/10.3390/ijerph14040435.
[4] 周梦怡,苏丹婷,何梦洁,等.植物性饮食与不同肥胖类型的关联研究[J].预防医学,2025,37(8):773-778.
ZHOU M Y,SU D T,HE M J,et al.Association between plant-based diet and different types of obesity[J].China Prev Med J,2025,37(8):773-778.(in Chinese)
[5] 程文迪,刘佳美,王海银,等.我国公立医院体重管理中心和门诊建设现状研究[J].健康发展与政策研究,2025,28(4):372-378,385.
CHENG W D,LIU J M,WANG H Y,et al.The current status of weight management centers and outpatient clinics in China's public hospitals[J].Health Dev Policy Res,2025,28(4):372-378,385.(in Chinese)
[6] JOHNSTON C A,MORENO J P,FOREYT J P.Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes[J].Curr Atheroscler Rep,2013,369(2):145-154.
[7] 刘万奇,杨金侠,谢翩翩,等.我国慢病一体化管理的现状与思考[J].南京医科大学学报(社会科学版),2019,19(4):303-307.
LIU W Q,YANG J X,XIE P P,et al.Current situation and thinking of integrated management of chronic diseases in China[J].J Nanjing Med Univ Soc Sci,2019,19(4):303-307.(in Chinese)
[8] 董崇林,贾荣娟,侯建华,等.基于微信平台健康管理方案对超重和肥胖糖尿病高危人群的干预效果分析[J].中华健康管理学杂志,2017,11(6):531-536.
DONG C L,JIA R J,HOU J H,et al.Intervention effects of health management program based on WeChat platform for high-risk obese diabetic population[J].Chin J Health Manag,2017,11(6):531-536.(in Chinese)
[9] 刘芳,李欣,叶明浩,等.医院-社区-家庭模式对社区肥胖儿童青少年体质量的管理效果研究[J].中国全科医学,2020,23(19):2458-2461.
LIU F,LI X,YE M H,et al.Effects of hospital-community-family model on weight management of obese children and adolescents[J].Chin Gen Pract,2020,23(19):2458-2461.(in Chinese)
[10] 何向阳,刘峥,徐英,等.肥胖与四种常见慢性病的相关性分析[J].预防医学,2020,32(7):692-697.
HE X Y,LIU Z,XU Y,et al.Correlation between obesity and four common chronic diseases[J].China Prev Med J,2020,32(7):692-697.(in Chinese)
[11] 张露,冯文焕,王静,等.移动医疗应用程序在肥胖多学科门诊体重管理中的作用[J].江苏医药,2022,48(3):231-236,242.
ZHANG L,FENG W H,WANG J,et al.Effect of mobile health application on weight management in obesity multidisciplinary clinic[J].Jiangsu Med J,2022,48(3):231-236,242.(in Chinese)
[12] 伍朝春,黄政德,庞羽,等.肥胖症多学科协作诊疗模式研究进展[J].实用医学杂志,2023,39(12):1588-1592.
WU C C,HUANG Z D,PANG Y,et al.Research progress of multi-disciplinary collaborative diagnosis and treatment model of obesity[J].J Pract Med,2023,39(12):1588-1592.(in Chinese)
[13] 李萍,王海雪,高晓,等.基于移动健康技术对超重或肥胖孕妇体重管理的随机对照试验[J].北京大学学报(医学版),2025,57(3):465-472.
LI P,WANG H X,GAO X,et al.A randomized controlled trial of weight management based on mobile health techno-logy among overweight or obese pregnant women[J].J Peking Univ Health Sci,2025,57(3):465-472.(in Chinese)
[14] YEN H Y,JIN G,CHIU H L.Smartphone app-based interventions targeting physical activity for weight management:a meta-analysis of randomized controlled trials[J/OL].Int J Nurs Stud,2023,137[2025-10-28].https://doi.org/10.1016/j.ijnurstu.2022.104384.
[1] 陆杰, 张柯, 吴雅, 王玥, 张玥, 陆叶, 吴周理, 任志华, 黄艺文. 肥胖指标预测2型糖尿病患者心脑血管疾病的效果比较[J]. 预防医学, 2025, 37(9): 886-891.
[2] 张一, 李梦迪, 石亚锋, 苗超. 余姚市中小学生超重和肥胖现况调查[J]. 预防医学, 2025, 37(9): 955-958.
[3] 周梦怡, 苏丹婷, 何梦洁, 徐沛维, 韩丹, 黄李春, 章荣华. 植物性饮食与不同肥胖类型的关联研究[J]. 预防医学, 2025, 37(8): 773-778.
[4] 黄阳梅, 沈旭娟, 谢董颖, 张琦, 郑子聪, 王勐. 小学生体重监测信息反馈干预的效果评价[J]. 预防医学, 2025, 37(6): 541-545.
[5] 蒋安然, 朱煜典, 鲁芬, 方大春, 翟光富. 膳食行为与中学生超重肥胖的关联研究[J]. 预防医学, 2025, 37(4): 341-345.
[6] 江南, 唐晓敏, 孙文韬. 膳食模式与中小学生超重肥胖的关联研究[J]. 预防医学, 2025, 37(3): 228-232.
[7] 陈海苗, 马岩, 刘明奇, 马珊珊, 李军, 方益荣. 儿童期肥胖与2型糖尿病、冠心病的孟德尔随机化研究[J]. 预防医学, 2025, 37(3): 307-311.
[8] 叶真. 系统变革:超重肥胖防治新策略[J]. 预防医学, 2025, 37(11): 1081-1086.
[9] 孙婕, 李赟, 魏佳妤, 邵晓芳, 叶小君, 傅晔柳, 谷卫, 杨敏. 基于实施性研究综合框架的基层医疗卫生机构开展体重管理服务的影响因素分析[J]. 预防医学, 2025, 37(11): 1087-1092.
[10] 陈向宇, 王蒙, 胡如英, 关云琦, 梁明斌, 何青芳, 姚伟元, 钟节鸣. 2015—2023年浙江省成年居民超重肥胖流行趋势[J]. 预防医学, 2025, 37(11): 1093-1098.
[11] 何易阳, 王碧莲, 张萍萍, 励丽. 膳食质量与小学生超重肥胖的关系研究[J]. 预防医学, 2025, 37(11): 1099-1102.
[12] 姚春阳, 谢亮, 高慧, 金鎏, 王林红, 胡洁. 嘉兴市成人超重肥胖现况调查[J]. 预防医学, 2025, 37(11): 1108-1112.
[13] 叶振淼, 张默涵, 樊丽辉, 谢轶敏, 姜雪霞, 郑宇航, 罗永园, 夏喆铮, 金茜, 孙倩. 超重、肥胖、中心性肥胖与高血压的关系研究[J]. 预防医学, 2025, 37(11): 1113-1118.
[14] 杨丽雅, 杜厉英, 张亚当, 姜灵芝. 2型糖尿病患者西格列汀联合二甲双胍与门冬胰岛素联合二甲双胍干预效果比较[J]. 预防医学, 2025, 37(10): 1054-1058.
[15] 白勇, 李萍, 姜楠. 肥胖、外周血血脂指标与非小细胞肺癌的孟德尔随机化研究[J]. 预防医学, 2024, 36(6): 518-522.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed