Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (6): 612-615    DOI: 10.19485/j.cnki.issn2096-5087.2025.06.015
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
不同年龄分组的骨密度与原发性恶性骨肿瘤的孟德尔随机化研究
王曼怡, 吴菁菁, 李晓珊, 张慧茹, 黄智凯, 曾谷清
南华大学护理学院,湖南 衡阳 421001
Association between bone mineral density in different age groups and primary malignant bone tumor: a Mendelian randomization study
WANG Manyi, WU Jingjing, LI Xiaoshan, ZHANG Huiru, HUANG Zhikai, ZENG Guqing
School of Nursing, University of South China, Hengyang, Hunan 421001, China
全文: PDF(849 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 采用两样本孟德尔随机化(MR)方法分析不同年龄组骨密度与原发性恶性骨肿瘤的因果关联及潜在机制,为原发性恶性骨肿瘤防治提供参考。方法 骨密度的全基因组关联研究(GWAS)资料来源于GEFOS数据库,根据人体骨骼生长阶段分为0~15岁、15~30岁、30~45岁、45~60岁和>60岁5个年龄组,包括66 628名研究对象;原发性恶性骨肿瘤的GWAS资料来源于芬兰数据库,包括648例病例和378 749名对照。分别以5个年龄组骨密度为暴露,以原发性恶性骨肿瘤为结局,采用逆方差加权法进行MR分析;采用Cochran Q检验、MR-Egger回归法、MR-PRESSO检验和MR Steiger检验进行敏感性分析;使用京都基因与基因组百科全书(KEGG)富集分析探究骨密度与原发性恶性骨肿瘤因果关联的潜在机制。结果 MR分析结果显示,30~45岁组骨密度与原发性恶性骨肿瘤存在负向因果关联(OR=0.301,95%CI:0.126~0.721),未发现0~15岁、15~30岁、45~60岁和>60岁组骨密度与原发性恶性骨肿瘤存在统计学关联(均P>0.05);敏感性分析未发现异质性、水平多效性(均P>0.05)和反向因果关联。KEGG富集分析发现,与骨密度、原发性恶性骨肿瘤高度相关的基因富集于mTOR信号通路和Wnt信号通路,其中低密度脂蛋白受体相关蛋白5和Wnt家族成员16是关键调控基因。结论 30~45岁人群骨密度降低可能通过mTOR信号通路和Wnt信号通路增加原发性恶性骨肿瘤发病风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王曼怡
吴菁菁
李晓珊
张慧茹
黄智凯
曾谷清
关键词 骨密度原发性恶性骨肿瘤孟德尔随机化富集分析    
AbstractObjective To examine the causal association and potential mechanisms between bone mineral density in different age groups and primary malignant bone tumor based on two sample Mendelian randomization (MR), so as to provide a reference for the prevention and treatment of primary malignant bone tumor. Methods The genome-wide association study (GWAS) of bone mineral density was obtained from the GEFOS database,which included 66 628 subjects divided into five age groups (0-15, 15-30, 30-45, 45-60, and >60 years) based on the phases of human bone development. The GWAS of primary malignant bone tumor was sourced from the FinnGen database, including 648 cases and 378 749 controls. Using bone mineral density of five age groups as the exposure and primary malignant bone tumor as the outcome, an MR analysis was performed with the inverse-variance weighted (IVW) method. Sensitivity analysis were conducted using Cochran's Q test, MR-Egger regression, MR-PRESSO test and MR Steiger test. The potential mechanisms underlying the causal association between bone density and primary malignant bone tumors were explored using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Results The MR analysis results showed that there was a negative causal association between bone density and primary malignant bone tumors in the 30-45 age group (OR=0.301, 95%CI: 0.126-0.721). No statistically significant associations between bone density and primary malignant bone tumors were found in the 0-15, 15-30, 45-60, and >60 age groups (all P>0.05). Sensitivity analysis did not detect heterogeneity, pleiotropy (all P>0.05) and reverse causality. KEGG enrichment analysis revealed that genes highly associated with bone density and primary malignant bone tumors were enriched in the mTOR signaling pathway and the Wnt signaling pathway, among which Low Density lipoprotein Receptor Related protein 5 and Wnt Family Member 16 are key regulatory genes. Conclusion The decrease in bone mineral density among individuals aged 30-45 may increase the risk of primary malignant bone tumors through the mTOR signaling pathway and the Wnt signaling pathway.
Key wordsbone mineral density    primary malignant bone tumor    Mendelian randomization    enrichment analysis
收稿日期: 2024-12-27      修回日期: 2025-04-17      出版日期: 2025-06-10
中图分类号:  R738.1  
基金资助:湖南省自然科学基金项目(2021JJ3586),湖南省财政厅项目(〔2022〕44)
作者简介: 王曼怡,硕士研究生在读,护理学专业
通信作者: 曾谷清,E-mail:zengguqing0123@163.com   
引用本文:   
王曼怡, 吴菁菁, 李晓珊, 张慧茹, 黄智凯, 曾谷清. 不同年龄分组的骨密度与原发性恶性骨肿瘤的孟德尔随机化研究[J]. 预防医学, 2025, 37(6): 612-615.
WANG Manyi, WU Jingjing, LI Xiaoshan, ZHANG Huiru, HUANG Zhikai, ZENG Guqing. Association between bone mineral density in different age groups and primary malignant bone tumor: a Mendelian randomization study. Preventive Medicine, 2025, 37(6): 612-615.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.06.015      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I6/612
[1] ANDERSON W J,DOYLE L A.Updates from the 2020 World Health Organization classification of soft tissue and bone tumours[J].Histopathology,2021,78(5):644-657.
[2] XU Y,SHI F Q,ZHANG Y T,et al.Twenty-year outcome of prevalence,incidence,mortality and survival rate in patients with malignant bone tumors[J].Int J Cancer,2024,154(2):226-240.
[3] HORIUCHI K,NEMOTO R,MIZUNO T,et al.Prevalence of low bone mineral density and risk of fractures in osteosarcoma and Ewing's sarcoma survivors:a scoping review[J/OL].J Bone Oncol,2023,38[2025-04-17].https://doi.org/10.1016/j.jbo.2022.100464.
[4] LEE H F,WU C E,LIN Y S,et al.Low bone mineral density may be associated with long-term risk of cancer in the middle-aged population:a retrospective observational study from a single center[J].J Formos Med Assoc,2018,117(4):339-345.
[5] RAN S,ZHANG S Y,CHEN H T,et al.Total body bone mineral density and severe COVID-19:a Mendelian randomization analysis in five age strata[J/OL].Bone,2022,155[2025-04-17].https://doi.org/10.1016/j.bone.2021.116281.
[6] BURGESS S,THOMPSON S G.Mendelian randomization:methods for causal inference using genetic variants[M].2nd ed.New York:CRC Press,2021.
[7] MEDINA-GOMEZ C,KEMP J P,TRAJANOSKA K,et al.Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects[J].Am J Hum Genet,2018,102(1):88-102.
[8] SKRIVANKOVA V W,RICHMOND R C,WOOLF B A R,et al.Strengthening the reporting of observational studies in epidemiology using Mendelian randomization:the STROBE-MR Statement[J].JAMA,2021,326(16):1614-1621.
[9] CAO Z Q,WU Y D,LI Q X,et al.A causal relationship between childhood obesity and risk of osteoarthritis:results from a two-sample Mendelian randomization analysis[J].Ann Med,2022,54(1):1636-1645.
[10] LUTZ S M,VOORHIES K,WU A C,et al.The influence of unmeasured confounding on the MR Steiger approach[J].Genet Epidemiol,2022,46(2):139-141.
[11] WU H H,WU B,ZHANG S J,et al.Establishing age-adjusted trabecular bone score curves using dual-energy X-ray absorptiometry in Chinese women and men:a cross-sectional study[J].Quant Imaging Med Surg,2023,13(4):2478-2485.
[12] 施涛,魏嘉.恶性肿瘤骨转移靶向治疗及免疫治疗进展[J].中国肿瘤临床,2021,48(21):1093-1099.
SHI T,WEI J.Advances in targeted therapy and immunotherapy for bone metastases of malignant tumors[J].Chin J Clin Oncol,2021,48(21):1093-1099.(in Chinese)
[13] GEMAYEL J,CHAKER D,EL HACHEM G,et al.Mesenchymal stem cells-derived secretome and extracellular vesicles:perspective and challenges in cancer therapy and clinical applications[J].Clin Transl Oncol,2023,25(7):2056-2068.
[14] SADYKOVA L R,NTEKIM A I,MUYANGWA-SEMENOVA M,et al.Epidemiology and risk factors of osteosarcoma[J].Cancer Invest,2020,38(5):259-269.
[15] VALENZUELA C A,QUINTANILLA R,OLATE-BRIONES A,et al.SASP-dependent interactions between senescent cells and platelets modulate migration and invasion of cancer cells[J].Int J Mol Sci,2019,20(21):1-17.
[16] SIMCOX J,LAMMING D W.The central moTOR of metabolism[J].Dev Cell,2022,57(6):691-706.
[17] 张宗瑞,尹恒,张强,等.骨质疏松进程中破骨细胞能量代谢重编程研究进展[J].中国骨质疏松杂志,2022,28(11):1664-1669.
ZHANG Z R,YIN H,ZHANG Q,et al.Research progress in energy metabolism reprogramming of osteoclasts in the process of osteoporosis[J].Chin J Osteopor,2022,28(11):1664-1669.(in Chinese)
[18] BEK J W,SHOCHAT C,DE CLERCQ A,et al.Lrp5 mutant and crispant zebrafish faithfully model human osteoporosis,establishing the zebrafish as a platform for CRISPR-based functional screening of osteoporosis candidate genes[J].J Bone Miner Res,2021,36(9):1749-1764.
[1] 高增杰, 孔祥艳, 李来来, 柴艺汇. 炎症因子与早发性卵巢功能不全的双向孟德尔随机化研究[J]. 预防医学, 2025, 37(5): 512-516,520.
[2] 蒋舒頔, 郭婷, 凌军军, 任婕, 张亮. 初次性行为年龄与妇科恶性肿瘤的孟德尔随机化研究[J]. 预防医学, 2025, 37(5): 516-520.
[3] 章媛媛, 徐鹤翔, 李明. 微量营养素与肠易激综合征的孟德尔随机化研究[J]. 预防医学, 2025, 37(4): 378-381.
[4] 陈海苗, 马岩, 刘明奇, 马珊珊, 李军, 方益荣. 儿童期肥胖与2型糖尿病、冠心病的孟德尔随机化研究[J]. 预防医学, 2025, 37(3): 307-311.
[5] 陈海苗, 马岩, 刘明奇, 马珊珊, 李军, 徐来潮. 膳食成分与肠道微生物的孟德尔随机化研究[J]. 预防医学, 2025, 37(1): 73-76,81.
[6] 陈颖, 刘可, 刘彬, 孙晓慧, 何志兴, 毛盈颖, 叶丁. 肠道菌群与多囊卵巢综合征的孟德尔随机化研究[J]. 预防医学, 2024, 36(9): 801-805.
[7] 崔彦泽, 张玲, 蒋璐, 李慧敏, 王硕. 衰弱与2型糖尿病的孟德尔随机化研究[J]. 预防医学, 2024, 36(9): 786-789.
[8] 宋文富, 关徐涛, 王冰, 孙士玲, 李盈盈. 炎症因子与乳腺癌关系的孟德尔随机化研究[J]. 预防医学, 2024, 36(8): 714-717,722.
[9] 陈蓉, 莫口妈妮, 柯晓鸿, 王楚怀. 白细胞端粒长度与白内障的双向孟德尔随机化研究[J]. 预防医学, 2024, 36(7): 580-583.
[10] 刘伟, 林泉, 范宗静, 崔杰, 吴旸. 食物与动脉粥样硬化的孟德尔随机化研究[J]. 预防医学, 2024, 36(6): 483-486,490.
[11] 李煜楠, 徐鹏程, 贾俊亚, 闫铁昆. 体质指数与25种自身免疫性疾病的孟德尔随机化研究[J]. 预防医学, 2024, 36(5): 388-392.
[12] 王爽, 谭茜蔚, 令垚, 黄瑞贤, 马勇, 孔丹莉, 丁元林. 抗氧化营养素与妊娠并发症的孟德尔随机化研究[J]. 预防医学, 2024, 36(4): 345-349.
[13] 梁伟, 贡欣, 张晓晓, 李树苗. 子宫内膜癌与乳腺癌的双向孟德尔随机化研究[J]. 预防医学, 2024, 36(4): 350-354.
[14] 李红梅, 肖倩, 谢潇潇, 刘春强, 黄业保. 肠道微生物与便秘的双向孟德尔随机化研究[J]. 预防医学, 2024, 36(3): 198-202.
[15] 张露, 江流, 曹慧, 林芳. 60岁及以上人群骨质疏松症的影响因素分析[J]. 预防医学, 2024, 36(3): 235-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed