Please wait a minute...
文章检索
预防医学  2023, Vol. 35 Issue (2): 180-184    DOI: 10.19485/j.cnki.issn2096-5087.2023.02.022
  实验技术 本期目录 | 过刊浏览 | 高级检索 |
SiO2对大鼠气道表面微环境和NEK7/NLRP3炎性小体的影响研究
杭文璐1,2, 武琦3, 李婉君3, 薄芸3, 周贤梅2,4
1.徐州医科大学第二附属医院呼吸与危重症医学科,江苏 徐州 221000;
2.南京中医药大学,江苏 南京 210023;
3.徐州医科大学,江苏 徐州 221000;
4.南京中医药大学附属医院江苏省中医院,江苏 南京 210023
Effect of silicon dioxide exposure on airway surface microenvironment and NEK7/NLPR3 inflammasome in rats
HANG Wenlu1,2, WU Qi3, LI Wanjun3, BO Yun3, ZHOU Xianmei2,4
1. Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China;
2. Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, China;
3. Xuzhou Medical University, Xuzhou, Jiangsu 221000, China;
4. Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, China
全文: PDF(1116 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 探讨二氧化硅(SiO2)暴露对大鼠气道表面微环境、有丝分裂A(NIMA)相关激酶7(NEK7)/Nod样受体蛋白3(NLRP3)炎性小体的影响。方法 24只清洁级雄性SD大鼠随机分配入对照组和模型组。模型组采用一次性气管插管灌注SiO2混悬液法建立硅肺大鼠模型,对照组灌注等量生理盐水。造模后第14、28天,采集支气管肺泡灌洗液(BALF)检测pH值和葡萄糖含量。取肺组织进行HE、Masson 染色,光镜下观察肺组织炎症细胞分布和肺间质胶原沉积情况。采用免疫组化法检测转化生长因子β1(TGF-β1)、Ⅰ型胶原蛋白(Col Ⅰ),Ⅲ型胶原蛋白(Col Ⅲ)、白介素1β(IL-1β)、NLRP3、GSDMD-NT、caspase-1和NEK7的表达水平。结果 模型组大鼠在SiO2 暴露14 d和28 d的BALF pH值分别为6.38±0.05、6.63±0.14,低于对照组的6.68±0.08、6.86±0.05,葡萄糖水平分别为(0.39±0.06)、(0.39±0.08)mg/dL,高于对照组的(0.31±0.04)、(0.31±0.06)mg/dL(均P<0.05)。HE 染色和Masson染色显示,SiO2暴露14 d后大鼠肺组织呈轻中度肺泡炎和肺纤维化,28 d后呈中重度肺泡炎和肺纤维化。模型组大鼠SiO2暴露 14 d 和28 d肺组织的TGF-β1、Col Ⅰ、Col Ⅲ、IL-1β、NLRP3、GSDMD-NT、caspase-1和 NEK7表达水平均高于对照组(均P<0.05)。结论 SiO2暴露可导致气道表面微环境变化,包括BALF酸化和葡萄糖升高;NEK7相关的NLRP3炎性小体活化引起细胞焦亡可能是硅肺病肺纤维化的重要机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杭文璐
武琦
李婉君
薄芸
周贤梅
关键词 硅肺二氧化硅肺纤维化气道表面微环境NEK7NLRP3细胞焦亡    
AbstractObjective To examine the effect of SiO2 exposure on the airway surface microenvironment and NIMA-related kinase 7 (NEK7)/nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome in rats. Methods Twenty-four specific pathogen-free male rats of the SD strain were randomly divided into the control group and the model group, of 12 rats in each group. Rats in the model group were given SiO2 suspensions through disposable tracheal intubation perfusion to model silicosis in rats, while rats in the control group was perfused with the same amount of physiological saline. The pH value and glucose level were measured in the rat bronchoalveolar lavage fluid (BALF) 14 and 28 days after modeling. Lung tissues were stained with HE and Masson and the distribution of inflammatory cells and the deposition of pulmonary interstitial collagens were observed in lung tissues under a light microscope. The expression of transforming growth factor β1 (TGF-β1), collagen type Ⅰ(ColⅠ), collagen type Ⅲ (Col Ⅲ), interleukin-1β (IL-1β), NLRP3, N-terminal domain of Gasdermin D (GSDMD-NT), caspase-1, and NEK7 was quantified in lung specimens using immunohistochemistry. Results Lower pH values were measured in rat BALF in the model group than in the control group 14 [(6.38±0.05) vs. (6.68±0.08), P<0.05] and 28 days after modeling [(6.63±0.14) vs. (6.86±0.05), P<0.05], while higher glucose levels were seen in the model group than in the control group 14 [(0.39±0.06) vs. (0.31±0.04) mg/dL, P<0.05] and 28 days after modeling [(0.39±0.08) vs. (0.31±0.06) mg/dL, P<0.05]. HE and Masson staining showed mild to moderate alveolitis and pulmonary fibrosis in rats 14 days post-exposure to SiO2, and showed moderate to severe alveolitis and pulmonary fibrosis 28 days post-exposure. Immunohistochemistry detected higher TGF-β1, ColⅠ, Col Ⅲ, IL-1β, NLRP3, GSDMD-NT, caspase-1 and NEK7 expression in rat lung tissues in the model group than in the control group (all P<0.05). Conclusions SiO2 exposure may cause changes in rat airway surface microenvironment, including BALF acidification and elevated glucose. Pyroptosis induced by activation of NEK7-associated NLRP3 inflammasome may be an important mechanism of pulmonary fibrosis caused by silicosis.
Key wordssilicosis    silicon dioxide    pulmonary fibrosis    airway surface microenvironment    NEK7    NLRP3    pyroptosis
收稿日期: 2022-11-15      修回日期: 2022-12-22      出版日期: 2023-02-10
中图分类号:  R563  
基金资助:江苏省自然科学基金青年项目(BK20220236); 徐州市卫生健康委科技项目(XWKYHT20200041); 徐州市科技局医药卫生面上项目(KC22212)
通信作者: 周贤梅,E-mail:zhouxianmeijs@aliyun.com   
作者简介: 杭文璐,博士研究生在读,副主任中医师,主要从事呼吸系统疾病诊治工作
引用本文:   
杭文璐, 武琦, 李婉君, 薄芸, 周贤梅. SiO2对大鼠气道表面微环境和NEK7/NLRP3炎性小体的影响研究[J]. 预防医学, 2023, 35(2): 180-184.
HANG Wenlu, WU Qi, LI Wanjun, BO Yun, ZHOU Xianmei. Effect of silicon dioxide exposure on airway surface microenvironment and NEK7/NLPR3 inflammasome in rats. Preventive Medicine, 2023, 35(2): 180-184.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2023.02.022      或      http://www.zjyfyxzz.com/CN/Y2023/V35/I2/180
[1] MANDRIOLI D,SCHLUNSSEN V,ÁDÁM B,et al.WHO/ILO work-related burden of disease and injury: protocol for systematic reviews of occupational exposure to dusts and/or fibres and of the effect of occupational exposure to dusts and/or fibres on pneumoconiosis[J].Environ Int,2018,119:174-185.
[2] BAROJA-MAZO A,MARTÍN-SÁNCHEZ F,GOMEZ A I,et al.The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response[J].Nat Immunol,2014,15(8):738-748.
[3] 宋占帅,邵华,陈艳芹,等.NLRP3/IL-1β/TGF-β1信号轴在矽肺肺纤维化大鼠模型中的表达及意义[J].中华劳动卫生职业病杂志,2018,36(11):819-823.
[4] HE Y,ZENG M Y,YANG D,et al.NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux[J].Nature,2016,530(7590):354-357.
[5] HANG W L,ZHAO J,LI Y,et al.Experimental study on the effect of Si and P ion content in SiO2 exposure environment on the degree of pulmonary fibrosis[J].Indian J Pathol Microbiol,2021,64(4):644-650.
[6] SCHNIERING J,GUO L,BRUNNER M,et al.Evaluation of 99mTc-rhAnnexin V-128 SPECT/CT as a diagnostic tool for early stages of interstitial lung disease associated with systemic sclerosis[J/OL].Arthritis Res Ther,2018,20(1)[2022-12-22].http://doi.org/10.1186/s13075-018-1681-1.
[7] 王东,李凤芝,张波.气道表面微环境稳态与肺部感染[J].中华结核和呼吸杂志,2020,43(9):801-804.
[8] QIU Z E,XU J B,CHEN L,et al.Allicin facilitates airway surface liquid hydration by activation of CFTR[J/OL].Front Pharmacol,2022,13[2022-12-22].https://doi.org/10.3389/fphar.2022.890284.
[9] SHAH V S,MEYERHOLZ D K,TANG X X,et al.Airway acidification initiates host defense abnormalities in cystic fibrosis mice[J].Science,2016,351(6272):503-507.
[10] BAKER E H,BAINES D L.Airway glucose homeostasis: a new target in the prevention and treatment of pulmonary infection[J].Chest,2018,153(2):507-514.
[11] 杭文璐,赵杰,李佛萧,等.呼吸道病原体核酸检测在稳定期矽肺患者中的应用价值[J].医药论坛杂志,2021,42(22):5-8.
[12] FRANK D,VINCE J E.Pyroptosis versus necroptosis: similarities,differences,and crosstalk[J].Cell Death Differ,2019,26(1):99-114.
[13] SHARIF H,WANG L,WANG W L,et al.Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J].Nature,2019,570(7761):338-343.
[14] SCHMACKE N A,O'DUILL F,et al.IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network[J].Immunity,2022,55(12):2271-2284.
[1] 符莉芳, 宋志芳. 吲哚美辛对染尘大鼠肺泡巨噬细胞溶菌酶表达的影响[J]. 预防医学, 2016, 28(6): 546-549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed