Please wait a minute...
文章检索
预防医学  2024, Vol. 36 Issue (3): 211-214    DOI: 10.19485/j.cnki.issn2096-5087.2024.03.007
  论著 本期目录 | 过刊浏览 | 高级检索 |
心血管病高危人群预测模型研究
周梓萌1, 洪忻1,2
1.徐州医科大学公共卫生学院,江苏 徐州 221004;
2.南京市疾病预防控制中心,江苏 南京 210003
A prediction model of high-risk population for cardiovascular diseases
ZHOU Zimeng1, HONG Xin1,2
1. School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China;
2. Nanjing Center for Disease Control and Prevention, Nanjing, Jiangsu 210003, China
全文: PDF(1007 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 通过南京市35~79岁居民心血管病(CVD)高危人群调查,建立CVD高危人群预测模型。方法 于2020—2021年采用多阶段分层整群随机抽样方法,抽取南京市35~79岁居民为调查对象,通过问卷调查、体格检查和实验室检测收集人口学信息、生活方式和血生化指标等资料。参照《中国心血管病风险评估和管理指南》《中国成人血脂异常防治指南(2016年修订版)》判定CVD高危人群,采用多因素logistic回归模型分析CVD高危人群的影响因素;建立列线图,并采用受试者操作特征(ROC)曲线评价预测效果;采用Hosmer-Lemeshow拟合优度检验评价拟合效果;采用Bootstrap法进行内部校验。结果 调查38 428人,其中男性17 970人,占46.76%;女性20 458人,占53.24%。35~<60岁为主,25 714人占66.91%。检出CVD高危人群8 905人,检出率为23.17%。多因素logistic回归模型筛选出9个CVD高危人群的影响因素,建立预测模型为ln[P/(1-P)]=-7.305+2.107×年龄-0.366×性别+0.299×婚姻状况-0.297×文化程度+0.631×体质指数+0.013×睡眠时间+0.096×食用盐摄入+0.444×吸烟-0.069×饮酒。ROC曲线下面积为0.799(95%CI:0.794~0.805),灵敏度和特异度分别为0.731和0.753,区分度较好。构建的列线图模型校准度和稳定性均较好。结论 通过年龄、性别、婚姻状况、文化程度、体质指数、睡眠时间、食用盐摄入、吸烟和饮酒9个因素构建的列线图可用于预测居民CVD高危风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周梓萌
洪忻
关键词 心血管病高危人群影响因素列线图    
AbstractObjective To investigate the proportion of high-risk population for cardiovascular diseases (CVD) among residents at ages of 35 to 79 in Nanjing City, and establish a prediction model of high-risk population for CVD. Methods Residents at ages of 35 to 79 years were selected from Nanjing City using a multi-stage stratified cluster random sampling method from 2020 to 2021. Participants' demographic information, characteristics of lifestyle and blood biochemical index were collected using questionnaire surveys, physical examination and laboratory testing. The high-risk population for CVD were determined according to the Chinese Guidelines for Cardiovascular Disease Risk Assessment and Management, and the Chinese Guidelines for the Prevention and Treatment of Adult Dyslipidemia (2016 Revision). Predictive factors for high-risk population for CVD were screened using a multivariable logistic regression model. A nomogram was established and verified with receiver operation characteristic (ROC) curve. Hosmer-Lemeshow goodness of fit test was used to evaluate the fitting effect and Bootstrap method was used for internal verification. Results A total of 38 428 individuals were surveyed, including 17 970 males (46.76%) and 20 458 females (53.24%), and 25 714 individuals aged 35 to 59 years. There were 8 905 high-risk population for CVD, with a detection rate of 23.17%. Multivariable logistic regression analysis identified 9 factors affecting high-risk population for CVD. A prediction model was established for ln[P/(1-P)]=-7.305+2.107×age-0.366×gender+0.299×marital status-0.297×educational level+0.631×body mass index+0.013×sleep duration+0.096×edible salt intake+0.444×smoke-0.069×alcohol consumption. The area under ROC curve was 0.799 (95%CI: 0.794-0.805), the sensitivity and specificity were 0.731 and 0.753, indicating good differentiation. The nomogram based on the above factors indicated good calibration and stability. Conclusion The nomogram constructed by age, gender, marital status, educational level, body mass index, sleep duration, edible salt intake, smoking and alcohol consumption can be used to predict high-risk population for CVD.
Key wordscardiovascular diseases high-risk population    influencing factor    nomogram
收稿日期: 2023-10-16      修回日期: 2024-01-23      出版日期: 2024-03-10
中图分类号:  R54  
基金资助:南京市卫生科技发展专项资金项目(ZKX21054)
作者简介: 周梓萌,硕士研究生在读,公共卫生专业
通信作者: 洪忻,E-mail:nj_hongxin@126.com   
引用本文:   
周梓萌, 洪忻. 心血管病高危人群预测模型研究[J]. 预防医学, 2024, 36(3): 211-214.
ZHOU Zimeng, HONG Xin. A prediction model of high-risk population for cardiovascular diseases. Preventive Medicine, 2024, 36(3): 211-214.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2024.03.007      或      https://www.zjyfyxzz.com/CN/Y2024/V36/I3/211
[1] 向静,赵廷明,李鑫,等.通江县35~75岁居民心血管疾病高危人群调查[J].预防医学,2021,33(6):609-614.
[2] 《中国心血管健康与疾病报告 2020》编写组. 《中国心血管健康与疾病报告 2020》要点解读[J]. 中国心血管杂志,2021,26(3):209-218.
[3] 黄文,汤佳良,陈康康,等.绍兴市心血管疾病高危人群危险因素聚集分析[J].预防医学,2023,35(4):298-302,330.
[4] 吴洵,覃玉,崔岚,等. 江苏省居民心血管病高危人群流行病学特征及其影响因素分析[J]. 中华流行病学杂志,2022,43(1):78-84.
[5] 王巍巍,苏健,洪忻,等.南京市35岁及以上人群缺血性心血管病10年发病风险评估[J].中华疾病控制杂志,2021,25(7):837-842.
[6] 张秋伊,顾淑君,周正元.常熟市高血压患者血压控制情况及风险预测列线图模型构建[J].江苏预防医学,2023,34(4):393-397.
[7] 冶成芳,任映丽,王梦卉,等.高血压前期人群发生心血管疾病的风险预测列线图模型构建[J].实用心脑肺血管病杂志,2023,31(12):54-59.
[8] 农惠芸,宁焕,许霞,等.2型糖尿病合并高血压列线图预测模型构建[J].广西医科大学学报,2023,40(12):2035-2042.
[9] 朱梓嫣,郑频频.国内外大学生吸烟行为研究进展[J].健康教育与健康促进,2017,12(2):110-113.
[10] 施明明,张晓,李娜,等.居民血脂异常影响因素的列线图分析[J].预防医学,2019,31(5):460-464.
[11] REIS C,DIAS S,RODRIGUES A M,et al.Sleep duration,lifestyles and chronic diseases:a cross-sectional population-based study[J]. Sleep Sci,2018,11(4):217-230.
[12] SEMBER V,MEH K,SORIĆ M,et al.Validity and reliability of international physical activity questionnaires for adults across EU countries:systematic review and meta analysis[J]. Int J Environ Res Public Health,2020,17(19):1-23.
[13] 中国肥胖问题工作组.中国成人超重和肥胖症预防与控制指南(节录)[J].营养学报,2004,26(1):1-4.
[14] 杜金玲,周楠,宋莹倩,等.高血压家族史和血脂异常的交互作用对高血压患病风险的影响[J].中华疾病控制杂志,2022,26(6):651-656.
[15] 中国心血管病风险评估和管理指南编写联合委员会. 中国心血管病风险评估和管理指南[J]. 中国循环杂志,2019,34(1):4-28.
[16] YANG L,FISH A F,ZHU Y,et al.Sex differences in 10-year ischemic cardiovascular disease risk prediction in Chinese patients with prediabetes and type 2 diabetes[J]. BMC Cardiovasc Disord,2019,19(1):1-7.
[17] 孙中明,覃玉,张璐珉,等.江苏省城乡居民心血管病高危人群流行病学特征及聚集性分析[J].江苏预防医学,2019,30(1):44-47.
[18] 李晓莉. 心血管病高危人群早期筛查干预研究[J].世界最新医学信息文摘,2019,19(54):39-40.
[19] 米孝濛,徐文超,潘国才.常州市居民心血管病高危风险特征及共存情况[J].安徽预防医学杂志,2022,28(4):288-292.
[20] 陈新云,蒋小晶,周小雁,等.成都市社区居民血压分层调查及动脉粥样硬化性心血管病风险评估[J].中华高血压杂志,2020,28(8):776-780.
[21] 方欣,杨泽,钟文玲,等.福建省缺血性心血管病发病风险评估[J].中国公共卫生,2020,36(8):1139-1142.
[22] 周犇,盛红艳,薛雨星,等.2016—2018年常熟市居民心血管病高危影响因素研究[J].江苏预防医学,2021,32(4):481-483.
[23] 季春鹏. 血压相关指标对心血管事件和全因死亡的预测价值[D].石家庄:河北医科大学,2021.
[24] DWIVEDI A K,DUBEY P,CISTOLA D P,et al.Association between obesity and cardiovascular outcomes:updated evidence from meta-analysis studies[J]. Curr Cardiol Rep,2020,22:1-19.
[25] ISO H,CUI R,TAKAMOTO I,et al.Risk classification for metabolic syndrome and the incidence of cardiovascular disease in japan with low prevalence of obesity:a pooled analysis of 10 prospective cohort studies[J]. J Am Heart Assoc,2021,10(23):1-42.
[26] YUSUF S,JOSEPH P,RANGARAJAN S,et al.Modifiable risk factors,cardiovascular disease,and mortality in 155 722 individuals from 21 high-income,middle-income,and low-income countries (PURE):a prospective cohort study[J]. Lancet,2020,395(10226):795-808.
[27] 周丽,阮春燕,周晓丽,等.老年人群睡眠时长及睡眠质量与心血管疾病危险因素的关系研究[J].中华全科医学,2020,18(6):1035-1039.
[28] 张海庆,邬堂春,张晓敏.中国中老年人群生活方式与心血管病发生风险关联:基于东风同济队列的综述[J].中华疾病控制杂志,2021,25(3):271-275,283.
[1] 吕婧, 徐欣颖, 乔颖异, 石兴龙, 岳芳, 刘营, 程传龙, 张宇琦, 孙继民, 李秀君. 浙江省发热伴血小板减少综合征流行特征及影响因素分析[J]. 预防医学, 2026, 38(1): 10-14.
[2] 吴成慧, 彭艳红, 张可, 朱维晔, 邓亮, 谭玲玲, 瞿丹丹, 米秋香. 中青年2型糖尿病患者益处发现的影响因素分析[J]. 预防医学, 2026, 38(1): 31-35.
[3] 徐光明, 张震, 叶小红. 2015—2024年临海市新报告HIV/AIDS病例晚发现及影响因素分析[J]. 预防医学, 2026, 38(1): 71-74.
[4] 夏子淇, 陈晴晴, 高四海, 吴矛矛. 温州市中小学生营养健康知识调查[J]. 预防医学, 2026, 38(1): 98-101,106.
[5] 陈慧, 苗姗姗, 刘宪峰, 张慧. 新疆生产建设兵团中小学生龋齿现况调查[J]. 预防医学, 2026, 38(1): 102-106.
[6] 章涛, 林君芬, 古雪, 徐乐, 李傅冬, 吴晨. 社区老年人阿尔茨海默病列线图预测模型构建[J]. 预防医学, 2025, 37(9): 875-880.
[7] 陶桃, 张海芳, 凡鹏飞, 李秋华, 陈晓蕾. 丽水市老年肺结核患者治疗转归的影响因素分析[J]. 预防医学, 2025, 37(9): 892-896,902.
[8] 徐艳平, 闫晓彤, 姚丁铭, 徐越, 张雪海, 孙洁, 徐锦杭. 浙江省中老年人肺炎疫苗接种意愿的影响因素研究[J]. 预防医学, 2025, 37(9): 881-885.
[9] 姜艳, 李锦成, 许纯, 杨科佼, 杨文彬, 徐胜. 扬州市MSM人群艾滋病非职业暴露后预防知晓率调查[J]. 预防医学, 2025, 37(9): 903-906,912.
[10] 翟羽佳, 章涛, 古雪, 徐乐, 吴梦娜, 林君芬, 吴晨. 社区老年人认知衰弱现况调查[J]. 预防医学, 2025, 37(8): 762-766,772.
[11] 苏德华, 陈向阳, 李君, 赵丽娜, 张鹤美, 朱婷婷, 胡文雪, 赖江宜. 温州市新报告HIV/AIDS病例抗病毒治疗及时性分析[J]. 预防医学, 2025, 37(8): 804-808.
[12] 严青秀, 王炜, 郝晓刚, 高宇, 方春福, 张幸, 刘文峰. 2017—2023年衢州市肺结核患者未收治情况分析[J]. 预防医学, 2025, 37(8): 799-803.
[13] 王晓宇, 张志平, 董玉颖, 梁杰, 陈强. 老年人带状疱疹疫苗接种意愿的影响因素分析[J]. 预防医学, 2025, 37(8): 809-813.
[14] 王海琪, 张涵潇, 杨凤云, 国献丽, 范生荣, 张丽锋, 蒋泓. 嘉定区中学生抑郁情绪调查[J]. 预防医学, 2025, 37(8): 832-836.
[15] 成灵灵, 阎亚琼, 白增华, 张晓刚, 郝丽婷, 杨慧莹. 先天性甲状腺功能减退症患儿年龄别体质指数Z评分变化轨迹及影响因素[J]. 预防医学, 2025, 37(8): 858-863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed