Please wait a minute...
文章检索
预防医学  2022, Vol. 34 Issue (3): 217-221    DOI: 10.19485/j.cnki.issn2096-5087.2022.03.001
  论著 本期目录 | 过刊浏览 | 高级检索 |
基于百度指数和手足口病的疱疹性咽峡炎预测模型研究
吴昊澄, 鲁琴宝, 丁哲渊, 王心怡, 傅天颖, 杨珂, 吴晨, 林君芬
浙江省疾病预防控制中心公共卫生监测与业务指导所,浙江 杭州 310051
The Prediction model of herpangina epidemic trend based on Baidu index and hand, foot and mouth disease
WU Haocheng, LU Qinbao, DING Zheyuan, WANG Xinyi, FU Tianying, YANG Ke, WU Chen, LIN Junfen
Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
全文: PDF(1352 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 利用手足口病百度指数和发病资料建立预测模型预测疱疹性咽峡炎的流行趋势,为分析监测资料有限或缺失的传染病疫情提供参考。方法 通过中国疾病预防控制信息系统收集浙江省2015年第1周至2021年第39周的手足口病发病资料,通过百度搜索收集同期手足口病和疱疹性咽峡炎的百度指数。采用小波分析法分析手足口病百度指数与其发病时间序列的关联特征;建立手足口病百度指数与其发病数的随机森林训练模型,采用平均百分比误差评价拟合效果,代入疱疹性咽峡炎百度指数预测同期流行趋势。结果 疱疹性咽峡炎百度指数和手足口病百度指数,手足口病百度指数和其发病数均显示出以26周和52周为周期的双峰型季节特征。手足口病百度指数和其发病时间序列相位差小于0.1周,建立的同期训练模型平均百分比误差为13.07%,手足口病预测发病数与实际报告发病数的一致性较好。预测疱疹性咽峡炎2015—2020年拟合发病数分别为28 822例、27 341例、28 422例、51 782例、52 457例和5 691例,2021年截至第39周发病数为48 702例。发病高峰与手足口病相似,主要在5—7月。结论 基于百度指数和手足口病发病资料建立的模型可用于预测疱疹性咽峡炎的流行趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴昊澄
鲁琴宝
丁哲渊
王心怡
傅天颖
杨珂
吴晨
林君芬
关键词 疱疹性咽峡炎百度指数手足口病预测    
AbstractObjective To establish a prediction model of herpangina epidemic trend based on Baidu index and hand, foot and mouth disease, so as to provide insights into analyses of communicable disease epidemics with limited or missing surveillance data. Methods The incidence of hand, foot and mouth disease in Zhejiang Province during the period from the first week of 2015 through the 39th week of 2021 was retrieved from the China Information System for Disease Control and Prevention, and the Baidu index of hand, foot and mouth disease and herpangina was collected via the Baidu search engine during the same period. The correlation between the Baidu index and time series of hand, foot and mouth disease was examined using wavelet analysis. In addition, a random forest training model was created based on the Baidu index and incidence of hand, foot and mouth disease, and the fitting effectiveness was evaluated using the mean percentage error, while the Baidu index of herpangina was included in the model to predict the epidemic trend of herpangina during the study period. Results The Baidu index of herpangina and hand, foot and mouth disease, and the Baidu index and incidence of hand, foot and mouth disease all appeared two peaks at the 26th and 52th week. The phase difference was less than 0.1 week between the Baidu index and time series of hand, foot and mouth disease, and the mean percentage error of the training model was 13.07%, with high concordance between the predicted number and actual report number of cases with hand, foot and mouth disease. The numbers of herpangina cases were predicted to be 28 822, 27 341, 28 422, 51 782, 52 457 and 5 691 from 2015 to 2020, and there were totally 48 702 herpangina cases reported until the 39th week of 2021. Like hand, foot and mouth disease, the incidence of herpangina peaked between May and July. Conclusion The random forest training model based on the Baidu index and incidence of hand, foot and mouth disease is feasible to predict the epidemic trend of herpangina.
Key wordsherpangina    Baidu index    hand,foot and mouth disease    prediction
收稿日期: 2021-10-18      修回日期: 2021-12-28      出版日期: 2022-03-10
中图分类号:  R725.1  
基金资助:浙江省重点研发计划项目(2021C03038)
作者简介: 吴昊澄,硕士,副主任医师,主要从事传染病监测预警工作
通信作者: 林君芬,E-mail:jflin@cdc.zj.cn   
引用本文:   
吴昊澄, 鲁琴宝, 丁哲渊, 王心怡, 傅天颖, 杨珂, 吴晨, 林君芬. 基于百度指数和手足口病的疱疹性咽峡炎预测模型研究[J]. 预防医学, 2022, 34(3): 217-221.
WU Haocheng, LU Qinbao, DING Zheyuan, WANG Xinyi, FU Tianying, YANG Ke, WU Chen, LIN Junfen. The Prediction model of herpangina epidemic trend based on Baidu index and hand, foot and mouth disease. Preventive Medicine, 2022, 34(3): 217-221.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2022.03.001      或      https://www.zjyfyxzz.com/CN/Y2022/V34/I3/217
[1] LI W,GAO H H,ZHANG Q,et al.Large outbreak of herpangina in children caused by enterovirus in summer of 2015 in Hangzhou,China[J].Sci Rep,2016,6:1-5.
[2] 刘丹,刘丹,王静,等. 基于临床症状和病原学特征的手足口病与疱疹性咽峡炎流行病学分析[J].中国初级卫生保健,2018,32(6):48-50.
LIU D,LIU D,WANG J,et al.Epidemiological analysis of hand-foot-mouth disease and herpangina based on the clinical symptoms and etiological features[J].Chin Prim Health Care,2018,32(6):48-50.
[3] 黎芳,唐智超. 2016—2017年北京市顺义区疱疹性咽峡炎及手足口病流行特征及病原学监测分析[J].中国农村卫生,2020(11):44-47.
LI F,TANG Z C. Epidemiological characteristics and pathogenic surveillance analysis of herpangina and hand-foot-mouth disease in Shunyi District,Beijing from2016 to 2017[J].China Rural Health,2020(11):44-47.
[4] 吴昊澄,吴晨,鲁琴宝,等. 基于百度指数的诺如病毒感染暴发疫情预警研究[J].中国预防医学杂志,2021,22(2):120-124.
WU H C,WU C,LU Q B,et al.Baidu search index based early warning for norovirus outbreaks[J]. Chin Prev Med, 2021,22(2):120-124.
[5] YUAN Q Y,NSOESIE E O,LV B F,et al.Monitoring influenza epidemics in China with search query from Baidu [J/OL].PLoS One,2013,8(5)[2021-12-28].https://doi.org/10.1371/journal.pone.0064323.
[6] LI Z H,LIU T H,ZHU G H,et al. Dengue Baidu Search Index data can improve the prediction of local dengue epidemic:a case study in Guangzhou,China[J/OL].PLoS Negl Trop Dis,2017,11(3)[2021-12-28].https://doi.org/10.1371/journal.pntd.0005354.
[7] TAKECHI M,FUKUSHIMA W,NAKANO T,et al.Nationwide survey of pediatric inpatients with hand,foot,and mouth disease,herpangina,and associated complications during an epidemic period in Japan:estimated number of hospitalized patients and factors associated with severe cases[J].J Epidemiol,2018,29(9):354-362.
[8] 杨军,彭承琳,吴宝明.小波分析在医学中的应用[J].国外医学(生物医学工程分册),2002,25(2):89-92.
YANG J,PENG C L,WU B M.Applications of wavelet analysis in biomedicine[J]. Foreign Med Sci(Biomed Eng Fascicle),2002,25(2):89-92.
[9] BREIMAN L.Random forests[J]. Mach Learn,2001,45:5-32.
[10] HAPFELMEIER A,ULM K W.Variable selection by Random Forests using data with missing values[J]. Comput Stat Data Anal,2014,80:129-139.
[11] 周万航,李嫣斐,张媛媛. 疱疹性咽峡炎与手足口病的相关性研究进展[J].口腔疾病防治,2020,28(1):61-63.
ZHOU W H,LI Y F,ZHANG Y Y,et al.Research progress on the correlation between herpangina and hand-foot-mouth disease[J]. J Prev Treat Stom Dis,2020,28(1):61-63.
[12] PENG Q,XIE M,ZHANG Y,et al.Molecular epidemiology of the enteroviruses associated with hand,foot and mouth disease/herpangina in Dongguan,China,2015[J].Arch Virol,2016,161(12):3463-3471.
[13] 王浩权,马飞飞,龚刚,等. 2015—2020年嘉定区手足口病流行特征[J]. 预防医学,2021,33(10):1065-1067.
WANG H Q,MA F F,GONG G,et al.Epidemiological characteristics of hand-foot-mouth disease in Jiading District from 2015 to 2020[J].Prev Med,2021,33(10):1065-1067.
[14] 黄思超,刘魁,蒋健敏.基于互联网搜索引擎的传染病监测预警研究进展[J].疾病监测,2018,33(11):945-948.
HUANG S C,LIU K,JIANG J M.Progress in research of infections disease surveillance and prediction based on internet search engine[J].Dis Surveill,2018,33(11):945-948.
[15] ZHOU X C,SHEN H B.Notifiable infectious disease surveillance with data collected by search engine[J]. J Zhejiang Univ Sci C,2010,11(4):241-248.
[16] 丁哲渊,吴昊澄,吴晨,等. 浙江省新型冠状病毒肺炎疫情应急响应期间其他法定传染病监测分析[J].疾病监测,2020,35(8):746-751.
DING Z Y,WU H C,WU C,et al.Surveillance for notifiable communicable diseases in the context of emergency response to COVID-19 in Zhejiang[J]. Dis Surveill,2020,35(8):746-751.
[1] 卢文海, 孔校杰, 宋丽霞, 卢春如, 于碧鲲, 谢延. SARIMA、Prophet与BSTS模型预测手足口病发病率的效果比较[J]. 预防医学, 2026, 38(1): 79-84.
[2] 刘艳, 张子喆, 王雨达, 刘光涛, 沈建勇. 2013—2023年湖州市手足口病流行特征[J]. 预防医学, 2025, 37(7): 718-721.
[3] 龚亮亮, 戎志东. 10~13岁儿童非自杀性自伤行为风险预测模型研究[J]. 预防医学, 2025, 37(6): 546-550.
[4] 白瑞盈, 生海燕. 肺炎住院患者多重耐药菌感染的预测模型研究[J]. 预防医学, 2025, 37(5): 465-470.
[5] 王英杰 综述, 孙高峰, 审校. 2型糖尿病预测模型研究进展[J]. 预防医学, 2025, 37(4): 369-372,377.
[6] 杨亚, 费洁, 杨怡玮, 张冰, 张倩, 陆一涵. 手足口病发病与气象因素的关联研究[J]. 预防医学, 2025, 37(4): 346-349,355.
[7] 张小乔, 张筱碟, 赵振希, 谢鹏留, 代敏. LSTM、SARIMA和SARIMAX模型预测手足口病发病率的效果比较[J]. 预防医学, 2025, 37(3): 280-284,287.
[8] 潘祥, 童莺歌, 李怡萱, 倪珂, 程雯倩, 辛蒙雨, 胡钰滢. 机器学习方法构建健康素养预测模型的范围综述[J]. 预防医学, 2025, 37(2): 148-153.
[9] 孙秀秀, 沈建勇, 杨中荣, 罗小福, 张子喆. 气温对手足口病发病的影响研究[J]. 预防医学, 2025, 37(11): 1160-1164.
[10] 曾勇, 李亦麟, 吴耀坚. 2013—2023年萍乡市手足口病流行特征和空间聚集性分析[J]. 预防医学, 2025, 37(11): 1175-1178,1183.
[11] 周国营, 邢丽丽, 苏颖, 刘宏杰, 刘赫, 王迪, 薛锦峰, 戴威, 汪静, 杨兴华. 35~75岁居民心血管病高危风险预测模型研究[J]. 预防医学, 2025, 37(1): 12-16.
[12] 郑帅印, 李丽丹, 陈佩弟, 谢尔瓦妮古丽·阿卜力米提, 李砥. 2型糖尿病合并非酒精性脂肪肝的预测模型研究[J]. 预防医学, 2024, 36(9): 741-745,749.
[13] 汪琼, 陈丹青, 魏伊丽, 钱芳芳. 早产风险预测模型研究[J]. 预防医学, 2024, 36(8): 663-668.
[14] 陈佩弟, 肖婷婷, 李新秀, 郑帅印, 黄芸. 2016—2023年乌鲁木齐市大气PM2.5污染分析及建立预测模型[J]. 预防医学, 2024, 36(6): 510-513.
[15] 贾铭, 赵华, 彭菊意, 刘星宇, 刘宇丹, 侯嘉宁, 杨佳乐. 慢性病共病患者预后预测模型的范围综述[J]. 预防医学, 2024, 36(6): 491-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed