Please wait a minute...
文章检索
预防医学  2019, Vol. 31 Issue (1): 55-58    DOI: 10.19485/j.cnki.issn2096-5087.2019.01.013
  疾病控制 本期目录 | 过刊浏览 | 高级检索 |
应用SARIMA-GRNN组合模型分析肺结核流行的季节性特征
王华1, 田昌伟1, 王文明1, 滕国兴2
1.昆山市疾病预防控制中心,江苏 昆山 215300;
2.苏州大学公共卫生学院
全文: PDF(634 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 应用季节性差分自回归滑动平均模型(SARIMA)和广义回归神经网络(GRNN)组合模型分析肺结核流行的季节性特征,为预防和控制肺结核提供依据。方法 通过国家卫生健康委员会官网收集2005—2017年全国肺结核疫情资料,应用SARIMA-GRNN组合模型分析我国肺结核流行的趋势和季节性特征。结果 2005—2016年我国肺结核报告发病率平均每年下降3.17%,并且发病存在明显的季节性规律(3—6月为高峰)。SARIMA (0,1,1) (0,1,1) 12 模型较好的地拟合了我国肺结核发病长期趋势和季节性,其平均误差率为6.07%,决定系数为0.73。SARIMA (0,1,1) (0,1,1) 12 -GRNN组合模型的平均误差率为2.56%,决定系数为0.94。SARIMA (0,1,1) (0,1,1) 12 - GRNN组合模型预测的准确性优于SARIMA (0,1,1) (0,1,1) 12 模型,2017年的验证数据结果与此一致。结论 2005—2016年中国肺结核报告发病率平均每年下降3.17%,肺结核的发病高峰集中在每年3—6月,具有明显的季节性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王华
田昌伟
王文明
滕国兴
关键词 肺结核季节性季节性差分自回归滑动平均模型广义回归神经网络    
收稿日期: 2018-07-16      修回日期: 2018-09-17      出版日期: 2019-01-03
中图分类号:  R183.3  
基金资助:昆山市社会发展科技计划项目(KS1452)
作者简介: 王华,硕士,副主任医师,主要从事传染病防制管理工作
通信作者: 田昌伟,E-mail:43408197@qq.com   
引用本文:   
王华, 田昌伟, 王文明, 滕国兴. 应用SARIMA-GRNN组合模型分析肺结核流行的季节性特征[J]. 预防医学, 2019, 31(1): 55-58.
链接本文:  
https://www.zjyfyxzz.com/CN/Y2019/V31/I1/55
[1] World Health Organization. Global tuberculosis report2017[R/OL].(2018-01-03)[2018-07-16]http://www.who.int/tb/publications/ global_report/en.<br />
[2] ABAJOBIR A A,ABBAFATI C,ABBAS K M,et al.Global,regional,and national age-sex specific mortality for 264 causes of death,1980 2016:a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet,2015,390(10100):1151.<br />
[3] 中华人民共和国疾病预防控制局. 2017年全国法定传染病疫情概况[EB/OL].(2018-02-26)[2018-08-08]. http://www.moh.gov.cn/jkj/s3578/201802/de926bdb046749abb7b0a8e23d929104.shtml.<br />
[4] YU L,ZHOU L,TAN L,et al.Application of a new hybrid model with seasonal auto-regressive integrated moving average(ARIMA)and nonlinear auto-regressive neural network(NARNN)in forecasting incidence cases of HFMD in Shenzhen,China[J]. PLoS One,2014;9(6):e98241.<br />
[5] WANG T,ZHOU Y,WANG L,et al.Using autoregressive integrated moving average model to predict the incidence of hemorrhagic fever with renal syndrome in Zibo,China,2004-2014[J]. Japanese Journal of Infectious Diseases,2015,69(4):279-284.<br />
[6] 张正斌,鲁周琴,谢红,等. 结核病季节性分布特征及影响因素.中华流行病学杂志,2016,37(8):1183-1186.<br />
[7] KORTHALS A H,KREMER K,ERKENS C,et al.Tuberculosis seasonality in the Netherlands differs between natives and non-natives:a role for vitamin D deficiency?[J]. International Journal of Tuberculosis & Lung Disease,2012,16(5):639.<br />
[8] WAH W,DAS S,EARNEST A,et al.Time series analysis of demographic and temporal trends of tuberculosis in Singapore[J]. Bmc Public Health,2014,14(1):1121.<br />
[9] BRAS A L,GOMES D,FILIPE P A,et al.Trends,seasonality and forecasts of pulmonary tuberculosis in Portugal[J]. International Journal of Tuberculosis & Lung Disease,2014,18(10):1202-1210.<br />
[10] BOX G E P,JENKINS G M. Time series analysis:forecasting and control[J]. Journal of Time,2010,31(4):303-303.<br />
[11] SPECHT D F.A general regression neural network[J]. IEEE Transactions on Neural Networks,2002,2(6):568-576.<br />
[12] 褚文杰,金凯玲,林凯,等. 基于ARIMA乘积季节模型预测产超广谱β-内酰胺酶大肠埃希菌流行趋势研究[J]. 预防医学,2018,30(7):680-684.<br />
[13] 竺盛波,沈妙儿,周聪盛,等. 奉化区缺血性脑卒中发病季节的SARIMA模型预测[J]. 预防医学,2018,30(2):176-178.<br />
[14] AUDA F.Seasonality of tuberculosis[J]. Journal of Global Infectious Diseases,2011,3(1):46-55.<br />
[15] WILLIS M D,WINSTON C A,HEILIG C M,et al. Seasonality of tuberculosis in the United States,1993-2008[J]. Clin Infect Dis,2012(54):1553-1560.<br />
[16] MOOSAZADEH M,KHANJANI N,BAHRAMPOUR A .Seasonality and temporal variations of tuberculosis in the north of Iran[J]. Tanaffos,2013,12(4):35.<br />
[17] WEI W,JIANG J,LIANG H,et al.Application of a combined model with autoregressive integrated moving average (ARIMA) and generalized regression neural network(GRNN)in forecasting hepatitis incidence in Heng County,China[J]. PLoS One,2016,11(6):e0156768.<br />
[18] ZHANG G,HUANG S,DUAN Q,et al.Application of a hybrid model for predicting the incidence of tuberculosis in Hubei,China[J]. PLoS One,2013,8(11):e80969.<br />
[1] 卢文海, 孔校杰, 宋丽霞, 卢春如, 于碧鲲, 谢延. SARIMA、Prophet与BSTS模型预测手足口病发病率的效果比较[J]. 预防医学, 2026, 38(1): 79-84.
[2] 陶桃, 张海芳, 凡鹏飞, 李秋华, 陈晓蕾. 丽水市老年肺结核患者治疗转归的影响因素分析[J]. 预防医学, 2025, 37(9): 892-896,902.
[3] 凌红, 汪娜, 宋琴, 徐昊. 2009—2023年黄浦区肺结核流行特征和时空聚集性分析[J]. 预防医学, 2025, 37(9): 937-940.
[4] 严青秀, 王炜, 郝晓刚, 高宇, 方春福, 张幸, 刘文峰. 2017—2023年衢州市肺结核患者未收治情况分析[J]. 预防医学, 2025, 37(8): 799-803.
[5] 孙佳美, 卢巧玲, 高华强, 杨作凯, 徐来潮. 肺结核密切接触学生结核菌素皮肤试验结果分析[J]. 预防医学, 2025, 37(3): 243-247.
[6] 赵倩颖, 王慧, 李锦成, 许婕, 竺丽梅. 2013—2022年扬州市老年人群肺结核流行特征[J]. 预防医学, 2025, 37(3): 276-279.
[7] 张小乔, 张筱碟, 赵振希, 谢鹏留, 代敏. LSTM、SARIMA和SARIMAX模型预测手足口病发病率的效果比较[J]. 预防医学, 2025, 37(3): 280-284,287.
[8] 李君, 曾真, 王爵进, 王云峰. 2010—2024年温州市肺结核发病趋势分析[J]. 预防医学, 2025, 37(11): 1140-1144,1150.
[9] 方子健, 李清春, 谢立, 宋旭, 戴若骐, 吴亦斐, 贾庆军, 程庆林. 肺结核与糖尿病共病患者肺结核不良转归的城乡差异[J]. 预防医学, 2025, 37(1): 7-11.
[10] 马琼锦, 严慧琴, 吴蕴华, 郭旭, 杨丽佳, 唐利红, 杨圣元. 闵行区肺结核就诊延误、诊断延误和发现延误的影响因素分析[J]. 预防医学, 2025, 37(1): 59-64.
[11] 崔彩岩, 蒋骏, 王斐娴, 傅颖, 张晓龙. 2015—2023年苏州市学生肺结核时空分布特征[J]. 预防医学, 2025, 37(1): 77-81.
[12] 卢巧玲, 徐来潮, 张开漩. 绍兴市老年人群肺结核时空聚集性分析[J]. 预防医学, 2024, 36(9): 760-763.
[13] 吕阳, 乐博昕, 胡伟宏, 刘园, 陈昶, 刘效峰. 肺结核密切接触学生结核分枝杆菌潜伏感染的影响因素分析[J]. 预防医学, 2024, 36(8): 658-662.
[14] 张琳, 杜昕, 马煜, 刘依妮. 2016—2021年陕西省肺结核流行特征分析[J]. 预防医学, 2024, 36(8): 706-709.
[15] 李卫丹, 张子根. 一起利福平耐药肺结核聚集性疫情的流行病学调查[J]. 预防医学, 2024, 36(7): 630-632,635.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed