Please wait a minute...
文章检索
预防医学  2026, Vol. 38 Issue (2): 109-114    DOI: 10.19485/j.cnki.issn2096-5087.2026.02.001
  论著 本期目录 | 过刊浏览 | 高级检索 |
江苏省流感样病例病原学监测结果分析
石春雷1, 戴启刚2, 董彦会3, 刘东升1, 周胜男1
1.徐州市疾病预防控制中心,江苏 徐州 221006;
2.江苏省疾病预防控制中心,江苏 南京 210009;
3.北京大学儿童青少年卫生研究所,北京 100191
Etiological surveillance for influenza-like illness cases in Jiangsu Province
SHI Chunlei1, DAI Qigang2, DONG Yanhui3, LIU Dongsheng1, ZHOU Shengnan1
1. Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu 221006, China;
2. Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China;
3. Institute of Child and Adolescent Health, Peking University, Beijing 100191, China
全文: PDF(1786 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 分析江苏省流感样(ILI)病例病原学监测结果,了解不同型别流感病毒分布特征,为完善流感防控措施提供依据。方法 通过中国流感监测信息系统收集2019—2024年江苏省哨点监测ILI病例实验室检测资料,计算流感病毒阳性检出率,描述性分析不同型别流感病毒分布特征。采用最远邻连接法按年份和周次分析流感病毒阳性检出率聚类情况,依据簇距判定类别,通过聚类热图颜色深浅判定阳性检出率高低。结果 2019—2024年江苏省采集ILI病例标本183 878份,检出流感病毒阳性标本20 059份,阳性检出率为10.91%,年均阳性检出率为10.89%。流感病毒型别主要为甲型H3N2亚型、乙型Victoria系和甲型H1N1亚型,分别占40.92%、34.00%和24.80%;乙型Yamagata系连续5年未检出。甲型H3N2亚型是2019年1—3月和2022年6月—2023年12月主要型别,乙型Victoria系是2019年4月—2022年5月和2024年1—4月主要型别,甲型H1N1亚型是2024年5—12月主要型别。年份聚类分析结果显示,2019—2024年流感病毒阳性检出率聚类为3类,其中2019年和2024年簇距最短,2023年阳性检出率最高。甲型H3N2亚型和甲型H1N1亚型阳性检出率各聚类为1类,均为2023年阳性检出率最高;乙型Victoria系阳性检出率聚类为2类,2020年阳性检出率最高。周次聚类分析结果显示,2019—2024年流感病毒阳性检出率集中于第47—52周和第1—15周,其中甲型H3N2亚型、甲型H1N1亚型和乙型Victoria系阳性检出率分别集中于第30—34周和第42—52周、第9—15周和第51—52周、第1—11周和第50—52周。结论 2019—2024年江苏省流感病毒年均阳性检出率较低,甲型H1N1亚型、甲型H3N2亚型和乙型Victoria系交替流行,需保持乙型Yamagata系监测敏感性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石春雷
戴启刚
董彦会
刘东升
周胜男
关键词 流感样病例流感病毒病原学监测型别    
AbstractObjective To analyze the etiological surveillance results of influenza-like illness (ILI) cases in Jiangsu Province, and investigate the distribution characteristics of different influenza virus types, so as to provide the evidence for improving influenza prevention and control measures. Methods Influenza laboratory testing data for sentinel surveillance of ILI cases in Jiangsu Province from 2019 to 2024 were collected through the China Influenza Surveillance Information System. The positive detection rate of influenza virus was calculated, and descriptive analysis was performed to characterize the distribution of different influenza virus types. Using the farthest neighbor linkage method, influenza virus positive detection rates clustering was analyzed by year and week. Clusters were defined based on inter-cluster distance, and the intensity of the positive detection rate was visualized through color gradients in the clustering heatmap. Results From 2019 to 2024, a total of 183 878 ILI specimens were collected in Jiangsu Province. Among them, 20 059 specimens tested positive for influenza virus, corresponding to an overall positive detection rate of 10.91%, and an average annual positive detection rate of 10.89%. The primary circulating influenza virus types were influenza A H3N2 subtype, accounting for 40.92%, followed by influenza B Victoria linage at 34.00%, and influenza A H1N1 subtype at 24.80%. Influenza B Yamagata linage was not detected throughout the five-year period. Influenza A H3N2 subtype predominated during two distinct periods: from January to March 2019, and from June 2022 to December 2023. Influenz B Victoria linage was the dominant type from April 2019 to May 2022 and again from January to April 2024. Influenza A H1N1 subtype emerged as the primary type from May to December 2024. Year-based clustering analysis grouped the annual positive detection rates from 2019 to 2024 into three clusters. The closest cluster distance was observed between 2019 and 2024. The highest annual positive detection rate occurred in 2023. Both influenza A H3N2 and H1N1 subtype each formed a single cluster, with their peak positive detection rates also recorded in 2023. Influenza B Victoria lineage was separated into two clusters, with its highest positive detection rate occurring in 2020. Week-based clustering analysis revealed that influenza virus detection was concentrated in weeks 47 to 52 and weeks 1 to 15. More specifically, the positive detection rates for influenza A H3N2 subtype peaked during weeks 30 to 34 and weeks 42 to 52; for influenza A H1N1 subtype, during weeks 9 to 15 and weeks 51 to 52; and for influenza B Victoria lineage, during weeks 1 to 11 and weeks 50 to 52. Conclusions From 2019 to 2024, the average annual positive detection rate of influenza virus in Jiangsu Province remained relatively low. Influenza activity characterized by the alternating circulation of influenza A H1N1 subtype, influenza A H3N2 subtype, and influenza B Victoria linage. It is necessary to maintain the surveillance sensitivity for the influenza B Yamagata lineage.
Key wordsinfluenza-like illness case    influenza virus    etiological surveillance    type
收稿日期: 2025-12-02      修回日期: 2026-02-01     
中图分类号:  R511.7  
基金资助:国家重点研发计划项目(2023YFC2605100,2023YFC2605104); 江苏省中医疫病研究中心开放课题(JSYB2024KF23); 江苏医药职业学院校地协同创新项目(202592113)
作者简介: 石春雷,硕士,副主任医师,主要从事传染病控制工作
通信作者: 刘东升,E-mail:2369512374@qq.com   
引用本文:   
石春雷, 戴启刚, 董彦会, 刘东升, 周胜男. 江苏省流感样病例病原学监测结果分析[J]. 预防医学, 2026, 38(2): 109-114.
SHI Chunlei, DAI Qigang, DONG Yanhui, LIU Dongsheng, ZHOU Shengnan. Etiological surveillance for influenza-like illness cases in Jiangsu Province. Preventive Medicine, 2026, 38(2): 109-114.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2026.02.001      或      https://www.zjyfyxzz.com/CN/Y2026/V38/I2/109
[1] 王若琳,张奕,黎晓蕾,等.家长对学生流感疫苗接种的知信行特征及决定因素分析:一项基于多城市的调查[J].中国校医,2025,39(4):259-264,274.
[2] PENG J L,XU K,TONG Y,et al.Epidemiological characteristics of influenza outbreaks in schools in Jiangsu Province,China,2020-2023 post-COVID-19 pandemic[J/OL].BMC Infect Dis,2024,24(1)[2026-02-01].https://doi.org/10.1186/s12879-024-10079-8.
[3] 马春娜,吴双胜,张莉,等.北京市2015—2020年流感流行季流感样病例和流感病原学分析[J].中华实验和临床病毒学杂志,2021,35(1):44-48.
[4] 国家免疫规划技术工作组流感疫苗工作组.中国流感疫苗预防接种技术指南(2023—2024)[J].中华流行病学杂志,2023,44(10):1507-1530.
[5] 王铭韩,胡泽鑫,冯录召,等.新型冠状病毒感染疫情后我国季节性流感的流行趋势与防控建议[J].中华医学杂志,2024,104(8):559-565.
[6] DHANASEKARAN V,SULLIVAN S,EDWARDS K M,et al.Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination[J/OL].Nat Commun,2022,13(1)[2026-02-01].https://doi.org/10.1038/s41467-022-29402-5.
[7] OLSEN S J,AZZIZ-BAUMGARTNER E,BUDD A P,et al.Decreased influenza activity during the COVID-19 pandemic-United States,Australia,Chile,and South Africa,2020[J].MMWR Morb Mortal Wkly Rep,2020,69(37):1305-1309.
[8] 中华人民共和国国家卫生计划生育委员会办公厅.国家卫生计生委办公厅关于印发全国流感监测方案(2017年版)的通知[EB/OL].[2026-02-01].https://ivdc.chinacdc.cn/cnic/fascc/201802/P020180202290930853917.pdf.
[9] 石鑫,许军,舒畅,等.黑龙江省老年人群流行性感冒流行特征[J].预防医学,2023,35(3):250-252,261.
[10] 魏宇翔. 组学大数据的热图可视化[D].武汉:华中科技大学,2024.
[11] HUANG W J,CHENG Y H,TAN M J,et al.Epidemiological and virological surveillance of influenza viruses in China during2020-2021[J/OL].Infect Dis Poverty,2022,11(1)[2026-02-01].https://doi.org/10.1186/s40249-022-01002-x.
[12] CHEN Z Y,TSUI J L,GUTIERREZ B,et al.COVID-19 pandemic interventions reshaped the global dispersal of seasonal influenza viruses[J/OL].Science,2024,386(6722)[2026-02-01].https://doii.org/10.1126/science.adq3003.
[13] ACHANGWA C,PARK H,RYU S,et al.Collateral impact of public health and social measures on respiratory virus activity during the COVID-19 pandemic2020-2021[J/OL].Viruses,2022,14(5)[2026-02-01].https://doi.org/10.3390/v14051071.
[14] ADLHOCH C,SNEIDERMAN M,MARTINUKA O,et al.Spotlight influenza:the2019/20 influenza season and the impact of COVID-19 on influenza surveillance in the WHO European Region[J/OL].Euro Surveill,2021,26(40)[2026-02-01].https://doi.org/10.2807/1560-7917.ES.2021.26.40.2100077.
[15] 余宏杰,舒跃龙.流感大流行的威胁及中国的应对[J].疾病监测,2005,20(10):505-507.
[16] FU X Q,LONG J,XIONG Y,et al.Epidemic patterns of the different influenza virus types and subtypes/lineages for 10 years in Chongqing,China,2010-2019[J/OL].Hum Vaccin Immunother,2024,20(1)[2026-02-01].https://doi.org/10.1080/21645515.2024.2363076.
[17] SOMININA A,DANILENKO D,KOMISSAROV A B,et al.Assessing the intense influenza a(H1N1)pdm09 epidemic and vaccine effectiveness in the post-COVID season in the Russian federation[J/OL].Viruses,2023,15(8)[2026-02-01].https://doi.org/10.3390/v15081780.
[18] DESHEVA Y,KUDAR P,SERGEEVA M,et al.The persistence of cross-reactive immunity to influenza B/Yamagata neuraminidase despite the disappearance of the lineage:structural and serological evidence[J/OL].Int J Mol Sci,2025,26(15)[2026-02-01].https://doi.org/10.3390/ijms26157476.
[19] 辛丽,王大燕.乙型流感病毒Yamagata系毒株的消失及其疫苗株更换的思考及讨论[J].中国生物制品学杂志,2024,37(8):1014-1019.
[20] 傅俊杰,戴启刚,霍翔.2011—2019年江苏省不同型别流感病毒流行特征差异分析[J].疾病监测,2020,35(11):992-997.
[21] CHEN L,GUO Y C,LÓPEZ-GÜELL K,et al.Immunity debt for seasonal influenza after the COVID-19 pandemic and as a result of nonpharmaceutical interventions:an ecological analysis and cohort study[J/OL].Adv Sci,2025,12(20)[2026-02-01].https://doi.org/10.1002/advs.202410513.
[22] DAVE K,LEE P C.Global geographical and temporal patterns of seasonal influenza and associated climatic factors[J].Epidemiol Rev,2019,41(1):51-68.
[23] YU H J,ALONSO W J,FENG L Z,et al.Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies:spatio-temporal modeling of surveillance data[J/OL].PLoS Med,2013,10(11)[2026-02-01].https://doi.org/10.1371/journal.pmed.1001552.
[1] 王燕, 罗鹏. 湖州市某医院急性呼吸道感染病例常见病原体感染特征分析[J]. 预防医学, 2025, 37(3): 300-303.
[2] 王栗菲, 孙明希, 鹿燕青, 李森, 寿钧, 孟祥杰. 余杭区流行性感冒流行特征分析[J]. 预防医学, 2024, 36(7): 626-629.
[3] 杨艳娜, 李敏, 杨阳, 王祎. 一起学校肺炎支原体P1-Ⅱ型感染暴发疫情的流行病学调查[J]. 预防医学, 2024, 36(4): 342-344.
[4] 陆飞越, 姚凤燕, 沈智健, 郭林杰. 平湖市非细菌性呼吸道感染病原学监测结果[J]. 预防医学, 2024, 36(3): 239-242.
[5] 蒋卓婧, 黄泽民, 王吉玲, 陈金堃. 呼吸道感染肠道病毒D68型病例特征分析[J]. 预防医学, 2024, 36(1): 44-46.
[6] 石鑫, 许军, 舒畅, 冷焱. 黑龙江省老年人群流行性感冒流行特征[J]. 预防医学, 2023, 35(3): 250-252,261.
[7] 蒋卓婧, 葛小萍, 陈金堃, 王吉玲. 绍兴市手足口病病毒型别检测结果分析[J]. 预防医学, 2022, 34(5): 507-510.
[8] 李萍萍, 罗丽, 吴一峰, 叶莉霞. 老年人接种三价流感病毒裂解疫苗的免疫原性评价[J]. 预防医学, 2022, 34(3): 277-281.
[9] 楼秀玉, 颜浩, 孙逸, 王欣莹, 陈寅, 茅海燕. 应用ddPCR检测甲型H1N1 pdm09流感病毒H275Y突变研究[J]. 预防医学, 2022, 34(11): 1139-1144.
[10] 吕晓丽, 朱一, 竹军伟. 纳入气象因素的ARIMAX模型预测流行性感冒流行趋势[J]. 预防医学, 2021, 33(8): 780-783.
[11] 祁先群, 王子友, 郑涛涛. 三门县食源性疾病监测结果分析[J]. 预防医学, 2021, 33(6): 631-633.
[12] 刘艳, 金玫华, 沈建勇, 刘光涛, 付云, 杨中荣, 任飞林, 徐德顺. 新型冠状病毒肺炎疫情防控措施对湖州市流行性感冒流行特征的影响[J]. 预防医学, 2021, 33(4): 332-336.
[13] 王黎荔, 林丹, 高四海, 蔡圆圆, 山若青, 章乐怡, 王建. 温州市食源性疾病流行特征分析[J]. 预防医学, 2021, 33(3): 306-308.
[14] 孙品晶, 董莹, 李清, 陈晨, 李敏超. 海宁市老年人流感疫苗接种效果评价[J]. 预防医学, 2020, 32(9): 929-932.
[15] 刘卫光, 赵桂让, 黄道靖, 张智博, 孔振. 15岁以下严重急性呼吸道感染病例流感病毒检测结果分析[J]. 预防医学, 2020, 32(5): 516-518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed