Please wait a minute...
文章检索
预防医学  2023, Vol. 35 Issue (8): 677-681    DOI: 10.19485/j.cnki.issn2096-5087.2023.08.007
  综述 本期目录 | 过刊浏览 | 高级检索 |
腺病毒载体的黄病毒属病毒疫苗研究进展
陈敏 综述, 文金生 审校
宁波大学医学部,浙江 宁波 315211
Research progress of flavivirus vaccines based on adenovirus vector
CHEN Min, WEN Jinsheng
Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
全文: PDF(774 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 黄病毒属病毒有70多种,包括寨卡病毒(ZIKV)、登革病毒(DENV)和乙型脑炎病毒(JEV)等,已知其中超过33种病毒能够感染人类。已批准上市的黄病毒属病毒疫苗只有3种,大部分黄病毒属病毒仍缺乏安全有效的疫苗。腺病毒载体疫苗具有安全性高、成本低、便于储存和运输等优势。目前,已有2个腺病毒载体ZIKV疫苗进入早期临床试验,登革病毒、乙型脑炎病毒、西尼罗病毒和黄热病毒的腺病毒载体疫苗尚处于动物实验阶段。腺病毒载体黄病毒属病毒疫苗的研发还存在腺病毒的预存免疫、腺病毒载体免疫原性不足,以及黄病毒属病毒之间抗体依赖增强效应等问题。本文检索2006年1月—2023年6月发表的国内外相关文献,对腺病毒载体黄病毒属病毒疫苗研究现状和面临的挑战及其解决方案进行综述,为该类疫苗研发提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈敏
文金生
关键词 腺病毒载体黄病毒属病毒疫苗    
Abstract:There are more than 70 species of flaviviruses, including Zika virus, Dengue virus and Japanese encephalitis virus, and more than 33 species are known to be capable of infecting humans. Only three flavivirus vaccines have been approved, and there is a lack of safe and effective vaccines for most flaviviruses. Adenovirus-vectored vaccines have high safety, low cost, and convenience to store and transport. Currently, two adenovirus-vectored Zika vaccines are under early clinical trials, and adenovirus-vectored vaccines for Dengue virus, Japanese encephalitis virus, West Nile virus and yellow fever virus are still in the phase of animal experiment. In the development of adenovirus-vectored flavivirus vaccines, there are still problems of pre-existing immunity to adenovirus, the insufficient immunogenicity of adenovirus vectors and the antibody-dependent enhancement effects among flavivirus. Based on relevant publications from January 2006 to June 2023, this article reviews the current status, challenges and solutions of the research into adenovirus-vectored flavivirus vaccines, so as to provide the reference for the development of relevant vaccines.
Key wordsadenovirus vector    flavivirus    vaccine
收稿日期: 2023-04-19      修回日期: 2023-08-02      出版日期: 2023-08-10
中图分类号:  R186  
作者简介: 陈敏,硕士研究生在读
通信作者: 文金生,E-mail:wenjinsheng@nbu.edu.cn   
引用本文:   
陈敏, 文金生. 腺病毒载体的黄病毒属病毒疫苗研究进展[J]. 预防医学, 2023, 35(8): 677-681.
CHEN Min, WEN Jinsheng. Research progress of flavivirus vaccines based on adenovirus vector. Preventive Medicine, 2023, 35(8): 677-681.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2023.08.007      或      https://www.zjyfyxzz.com/CN/Y2023/V35/I8/677
[1] LURIA-PEREZ R,SANCHEZ-VARGAS L A,MUNOZ-LOPEZ P,et al.Mucosal vaccination:a promising alternative against flaviviruses[J/OL].Front Cell Infect Microbiol,2022,12[2023-08-02].https://doi.org/10.3389/fcimb.2022.887729.
[2] FERNANDEZ-GARCIA M D,MAZZON M,JACOBS M,et al.Pathogenesis of flavivirus infections:using and abusing the host cell[J].Cell Host Microbe,2009,5(4):318-328.
[3] 陈浩威,崔旻.黄病毒入侵中枢神经系统的分子机制研究进展[J].华中农业大学学报,2021,40(4):85-93.
[4] GEBRE M S,BRITO L A,TOSTANOSKI L H,et al.Novel approaches for vaccine development[J].Cell,2021,184(6):1589-1603.
[5] AFKHAMI S,KANG A,JEYANATHAN V,et al.Adenoviral-vectored next-generation respiratory mucosal vaccines against COVID-19[J/OL]. Curr Opin Virol,2023,61[2023-08-02].https://doi.org/10.1016/j.coviro.2023.101334.
[6] WANG S, LIANG B, WANG W Q,et al.Viral vectored vaccines:design,development,preventive and therapeutic applications in human diseases[J/OL].Signal Transduct Target Ther,2023,8(1)[2023-08-02].https://doi.org/10.1038/s41392-023-01408-5.
[7] SALISCH N C,STEPHENSON K E,WILLIAMS K,et al.A double-blind,randomized,placebo-controlled phase 1 study of Ad26.ZIKV.001, an Ad26-vectored anti-Zika virus vvaccine[J].Ann Intern Med,2021,174(5):585-594.
[8] LOPEZ-CAMACHO C, ABBINK P, LAROCCA R A, et al.Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors[J/OL].Nat Commun,2018,9(1)[2023-08-02].https://doi.org/10.1038/s41467-018-04859-5.
[9] HASSAN A O,DMITRIEV I P,KASHENTSEVA E A,et al.A gorilla adenovirus-based vaccine against Zika virus induces durable immunity and confers protection in pregnancy[J].Cell Rep,2019,28(10):2634-2646.
[10] ABBINK P,LAROCCA R A,DE LA BARRERA R A,et al.Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys[J].Science,2016,353(6304):1129-1132.
[11] 韩雨旋. 基于黑猩猩重组腺病毒载体的寨卡病毒疫苗研究[D].海口:海南医学院,2019.
[12] HALSTEAD S B.Pathogenesis of dengue:challenges to molecular biology[J].Science,1988,239(4839):476-481.
[13] RAVIPRAKASH K,WANG D,EWING D, et al.A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus[J].J Virol,2008,82(14):6927-6934.
[14] SHOUSHTARI M,ROOHVAND F,SALEHI-VAZIRI M,et al.Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses[J/OL].Hum Vaccin Immunother,2022,18(5)[2023-08-02].https://doi.org/10.1080/21645515.2022.2079323.
[15] KHANAM S,PILANKATTA R,KHANNA N,et al.An adenovirus type 5 (AdV5) vector encoding an envelope domain III-based tetravalent antigen elicits immune responses against all four dengue viruses in the presence of prior AdV5 immunity[J].Vaccine, 2009,27(43):6011-6021.
[16] SCHEPP-BERGLIND J,LUO M,WANG D,et al.Complex adenovirus-mediated expression of West Nile virus C,PreM,E,and NS1 proteins induces both humoral and cellular immune responses[J].Clin Vaccine Immunol,2007,14(9):1117-1126.
[17] APPAIAHGARI M B,SAINI M,RAUTHAN M,et al.Immunization with recombinant adenovirus synthesizing the secretory form of Japanese encephalitis virus envelope protein protects adenovirus-exposed mice against lethal encephalitis[J].Microbes Infect,2006,8(1):92-104.
[18] BASSI M R,LARSEN M A,KONGSGAARD M,et al.Vaccination with replication deficient adenovectors encoding YF-17D antigens induces long-lasting protection from severe Yellow fever virus infection in mice[J/OL].PLoS Negl Trop Dis,2016,10(2):[2023-08-02].https://doi.org/10.1371/journal.pntd.0004464.
[19] ROBERTS D M,NANDA A,HAVENGA M J,et al.Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity[J].Nature,2006,441(7090):239-243.
[20] CROYLE M A.AMI P,TRAN K N,et al.Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice[J/OL].PLoS One,2008,3(10)[2023-08-02].https://doi.org/10.1371/journal.pone.0003548.
[21] JEYANATHAN M,FRITZ D K,AFKHAMI S,et al.Aerosol delivery, but not intramuscular injection,of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans[J/OL].JCI Insight,2022,7(3)[2023-08-02].https://doi.org/10.1172/jci.insight.155655.
[22] COUGHLAN L.Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines[J/OL].Front Immunol,2020,11[2023-08-02].https://doi.org/10.3389/fimmu.2020.00909.
[23] BULLARD B L, CORDER B N, GORMAN M J,et al.Efficacy of a T cell-biased adenovirus vector as a Zika virus vaccine[J/OL]. Sci Rep, 2018, 8(1)[2023-08-02].https://doi.org/10.1038/s41598-018-35755-z.
[24] LOGUNOV D Y,DOLZHIKOVA I V,ZUBKOVA O V,et al.Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations:two open,non-randomised phase 1/2 studies from Russia[J].Lancet,2020,396(10255):887-897.
[25] LOGUNOV D Y,DOLZHIKOVA I V,SHCHEBLYAKOV D V,et al.Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine:an interim analysis of a randomised controlled phase 3 trial in Russia[J].Lancet,2021,397(10275):671-681.
[26] AFKHAMI S,D'AGOSTINO M R,ZHANG A,et al.Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2[J].Cell,2022,185(5):896-915.
[27] BROWN J A,SINGH G,ACKLIN J A,et al.Dengue virus immunity increases Zika virus-induced damage during pregnancy[J].Immunity,2019,50(3):751-762.
[28] CHEN D,DUAN Z L,ZHOU W H,et al.Japanese encephalitis virus-primed CD8+ T cells prevent antibody-dependent enhancement of Zika virus pathogenesis[J/OL].J Exp Med,2020,217(9)[2023-08-02].https://doi.org/10.1084/jem.20192152.
[29] KATZELNICK L C,GRESH L,HALLORAN M E,et al.Antibody-dependent enhancement of severe dengue disease in humans[J].Science, 2017,358(6365):929-932.
[30] DAI L, XU K, LI J, et al.Protective Zika vaccines engineered to eliminate enhancement of dengue infection via immunodominance switch[J].Nat Immunol,2021,22(8):958-968.
[1] 徐艳平, 闫晓彤, 姚丁铭, 徐越, 张雪海, 孙洁, 徐锦杭. 浙江省中老年人肺炎疫苗接种意愿的影响因素研究[J]. 预防医学, 2025, 37(9): 881-885.
[2] 王晓宇, 张志平, 董玉颖, 梁杰, 陈强. 老年人带状疱疹疫苗接种意愿的影响因素分析[J]. 预防医学, 2025, 37(8): 809-813.
[3] 赵志元, 郑俐敏. 我国人用狂犬病疫苗接种不良反应研究进展[J]. 预防医学, 2025, 37(7): 682-686.
[4] 田海艳, 李保军, 陈奕. 宁波市流行性腮腺炎突破病例分析[J]. 预防医学, 2025, 37(3): 292-295.
[5] 唐学雯, 白祎然, 苏颖, 龚黎明, 严睿, 朱瑶, 何寒青. 一例急性弛缓性麻痹病例检出疫苗衍生脊髓灰质炎病毒的流行病学调查[J]. 预防医学, 2025, 37(2): 178-180,188.
[6] 李依窈, 李小菊, 申小颖, 张宪琦, 赵莉, 张玉涵, 汪欣梦. 老年人接种流行性感冒疫苗的影响因素分析[J]. 预防医学, 2025, 37(1): 31-35.
[7] 杨旭, 王旭雯. 2015—2023年无锡市风疹流行特征[J]. 预防医学, 2025, 37(1): 65-68.
[8] 王苗玲, 童莺歌. 疫苗素养评价工具研究进展[J]. 预防医学, 2024, 36(9): 768-771.
[9] 王颖, 江媚, 华丽, 林玉幸. 海珠区14岁以下儿童水痘突破病例特征分析[J]. 预防医学, 2024, 36(6): 523-526.
[10] 李宏森, 平玲, 王正鑫, 蒋厚菲, 侯丁琳, 张艺榕, 王灵犀, 杨净思. H2减毒株甲型病毒性肝炎灭活疫苗制备及免疫剂量分析[J]. 预防医学, 2024, 36(5): 407-411,415.
[11] 许荣全, 杜哲群, 余鹏飞, 沈国初, 胡洁, 张阳春. 嘉兴市13价肺炎球菌多糖结合疫苗疑似预防接种异常反应监测结果[J]. 预防医学, 2024, 36(5): 420-422,427.
[12] 杨黎琳, 陈健君, 李仪, 陈新河. 我国医务人员流行性感冒疫苗接种意愿的Meta分析[J]. 预防医学, 2024, 36(2): 109-114.
[13] 李保军, 施方伦, 林伊荷, 童思未, 刘芳. 海曙区水痘突破病例特征分析[J]. 预防医学, 2024, 36(1): 55-57.
[14] 刘艳, 沈建勇, 张超, 孙秀秀, 王雨达, 郑佳仪, 张子喆. 2012—2022年湖州市百日咳流行特征分析[J]. 预防医学, 2023, 35(9): 811-813.
[15] 张超, 罗小福, 刘艳, 沈建勇, 徐秦儿, 韩利萍, 马力. 湖州市老年人接种流感灭活疫苗疑似预防接种异常反应监测结果[J]. 预防医学, 2023, 35(8): 701-704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed