Please wait a minute...
文章检索
预防医学  2026, Vol. 38 Issue (2): 149-155    DOI: 10.19485/j.cnki.issn2096-5087.2026.02.009
  综述 本期目录 | 过刊浏览 | 高级检索 |
职业性苯暴露氧化损伤机制及其生物标志物研究进展
王爱红, 李晓海 综述, 金米聪 审校
宁波市疾病预防控制中心,浙江 宁波 315010
Research progress of the oxidative damage mechanism and its biomarkers caused by occupational benzene exposure
WANG Aihong, LI Xiaohai, JIN Micong
Ningbo Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
全文: PDF(854 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随着我国加强苯的源头管控,工作场所苯暴露逐渐向长期低浓度转变,长期低浓度职业性苯暴露所致的慢性毒性,尤其是血液毒性与致癌效应,已成为职业健康领域的核心关注问题。苯是人类致癌物,其健康危害和毒理学机制研究备受重视。苯在体内经细胞色素P450酶系代谢生成氢醌、苯醌等活性产物,通过诱导活性氧蓄积引发氧化应激,进而导致脂质过氧化、蛋白质氧化调控异常、DNA损伤和表观遗传修饰,最终介导慢性毒性效应。本文针对长期低浓度职业性苯暴露,系统综述其氧化损伤的关键机制,如铁死亡介导的脂质过氧化、p53/核因子κB通路的氧化调控和DNA氧化损伤修复障碍等,重点梳理与氧化应激相关的生物标志物,如8-羟基脱氧鸟苷、外泌体miR-34a和热休克蛋白90α,并总结当前低浓度暴露生物标志物特异性不足的问题。未来研究需聚焦多组学联合标志物开发、氧化损伤干预技术及可穿戴监测设备应用,为低浓度苯暴露的早期预警与职业健康保护提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王爱红
李晓海
金米聪
关键词 职业暴露氧化损伤生物标志物    
Abstract:With the strengthening of source control of benzene in China, occupational benzene exposure in workplaces has gradually shifted to long-term low-concentration exposure. The chronic toxicity caused by long-term low-concentration occupational benzene exposure, especially hematotoxicity and carcinogenic effects, has become a core concern in the field of occupational health. Benzene is a human carcinogen, and its health hazards and toxicological mechanisms have received much attention. Studies have shown that benzene is metabolized in vivo by cytochrome P450 enzyme system to generate active products such as hydroquinone and benzoquinone, which induce reactive oxygen species (ROS) accumulation and trigger oxidative stress, leading to lipid peroxidation, abnormal protein oxidative regulation, DNA damage, and epigenetic modifications, ultimately mediating chronic toxic effects. This paper systematically reviewed the key mechanisms of oxidative damage caused by long-term low-concentration occupational benzene exposure, such as ferroptosis-mediated lipid peroxidation, p53/nuclear factor-κB pathway oxidative regulation, and DNA oxidative damage repair disfunction, focused on summarizing oxidative stress-related biomarkers such as 8-hydroxydeoxyguanosine, exosomal miR-34a, and heat shock proteins 90α, and summarized the current problem of insufficient specificity of biomarkers for low-concentration exposure. Future research needs to focus on multi-omics combined biomarker development, oxidative damage intervention technology, and wearable monitoring equipment application, so as to provide the evidence for early warning and occupational health protection against low-concentration benzene exposure.
Key wordsbenzene    occupational exposure    oxidative damage    biomarkers
收稿日期: 2025-08-26      修回日期: 2025-11-16     
中图分类号:  R134  
基金资助:宁波市市级医疗卫生品牌学科建设项目(PPXK2024-09); 浙江省疾病预防控制科技计划项目(2026JKY022)
作者简介: 王爱红,硕士,主任医师,主要从事职业卫生监测和职业健康风险评估工作
通信作者: 金米聪,E-mail:jmcjc@163.com   
引用本文:   
王爱红, 李晓海, 金米聪. 职业性苯暴露氧化损伤机制及其生物标志物研究进展[J]. 预防医学, 2026, 38(2): 149-155.
WANG Aihong, LI Xiaohai, JIN Micong. Research progress of the oxidative damage mechanism and its biomarkers caused by occupational benzene exposure. Preventive Medicine, 2026, 38(2): 149-155.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2026.02.009      或      https://www.zjyfyxzz.com/CN/Y2026/V38/I2/149
[1] SNYDER R,WITZ G,GOLDSTEIN B D.The toxicology of benzene[J].Environ Health Perspect,1993,100:293-306.
[2] 中华人民共和国生态环境部.关于印发《重点行业挥发性有机物综合治理方案》的通知[EB/OL].[2025-11-16].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201907/t20190703_708395.html.
[3] 中华人民共和国国家卫生健康委员会.工作场所有害因素职业接触限值第1部分:化学有害因素:GBZ 2.1—2019[S].2020.
[4] 彭艳,张磊,朱嫒嫒,等.杭州市苯接触作业在岗工人血常规异常及影响因素分析[J].预防医学,2020,32(10):1059-1061,1065.
[5] WANG B S,XU S X,SUN Q Y,et al.Let-7e-5p,a promising novel biomarker for benzene toxicity,is involved in benzene-induced hematopoietic toxicity through targeting caspase-3 and p21[J/OL].Ecotoxicol Environ Saf,2022,246[2025-11-16].https://doi.org/10.1016/j.ecoenv.2022.114142.
[6] 邬堂春. 职业卫生与职业医学[M].8版.北京:人民卫生出版社,2017.
[7] AMIR-ATA J S,MOHAMMAD-REZA V,MALEKINEJAD H.The benzene-induced hepatic cytochrome P450 2E1 expression and activity are reduced by quercetin administration in mice[J].Curr Pharm Des,2024,30(9):676-682.
[8] THOMAS R,KIM S,LAN Q,et al.Benzene metabolism is dominated by a high-affinity pathway at ambient exposures with implications for cancer risks[J/OL].Int J Mol Sci,2025,26(17)[2025-11-16].https://doi.org/10.3390/ijms26178550.
[9] HARJUMÄKI R,PRIDGEON C S,INGELMAN-SUNDBERG M.CYP2E1 in alcoholic and non-alcoholic liver injury.roles of ROS,reactive intermediates and lipid overload[J/OL].Int J Mol Sci,2021,22(15)[2025-11-16].https://doi.org/10.3390/ijms22158221.
[10] MATHIALAGAN R D,ABD HAMID Z,NG Q M,et al.Bone marrow oxidative stress and acquired lineage-specific genotoxicity in hematopoietic stem/progenitor cells exposed to 1,4-benzoquinone[J/OL].Int J Environ Res Public Health,2020,17(16)[2025-11-16].https://doi.org/10.3390/ijerph17165865.
[11] YOSHIKAWA T,YOU F.Oxidative stress and bio-regulation[J/OL].Int J Mol Sci,2024,25(6)[2025-11-16].https://doi.org/10.3390/ijms25063360.
[12] HIRAKU Y.Oxidative and nitrative DNA damage induced by industrial chemicals in relation to carcinogenesis[J/OL].J Occup Health,2025,67(1)[2025-11-16].https://doi.org/10.1093/joccuh/uiaf003.
[13] 王镜岩. 生物化学[M].3版.北京:高等教育出版社,2002.
[14] XIANG Q Q,WANG D,ZHANG J L,et al.Effect of silver nanoparticles on gill membranes of common carp:Modification of fatty acid profile,lipid peroxidation and membrane fluidity[J/OL].Environ Pollut,2020,256[2025-11-16].https://doi.org/10.1016/j.envpol.2019.113504.
[15] WANG B Q,WANG Y,ZHANG J,et al.ROS-induced lipid peroxidation modulates cell death outcome:mechanisms behind apoptosis,autophagy,and ferroptosis[J].Arch Toxicol,2023,97(6):1439-1451.
[16] YANG X H,DONG S Y,XING C H,et al.Ferroptosis is involved in the benzene-induced hematotoxicity via mitochondrial ROS-ferritinophagy pathway[J/OL].Environ Pollut,2025,376[2025-11-16].https://doi.org/10.1016/j.envpol.2025.126379.
[17] BOUTELLE A M,ATTARDI L D.p53 and tumor suppression:it takes a network[J].Trends Cell Biol,2021,31(4):298-310.
[18] 刘啸岚,阎新龙,郑晓飞.ATM氧化激活及其在氧化应激中的作用[J].军事医学,2023,47(1):71-74,80.
[19] D'SOUZA L C,KURIAKOSE N,RAGHU S V,et al.ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis[J].Free Radic Biol Med,2022,193(1):190-201.
[20] NIGDELIOGLU DOLANBAY S,ŞIRIN S,ASLIM B.Allocryptopine attenuates inflammatory responses in microglial cells via TLR4-dependent NF-κB and p38 MAPK pathways[J].Mol Neurobiol,2025,62(3):3833-3847.
[21] 李彦霖,郁叶,郭婷莉,等.氧化应激和炎症反应中Nrf2/HO-1与MAPK的相关性[J].医学综述,2021,27(1):8-13.
[22] HE J,PENG C,YANG X H,et al.Identification of critical genes associated with oxidative stress pathways in benzene-induced hematotoxicity[J/OL].Heliyon,2024,10(15)[2025-11-16].https://doi.org/10.1016/j.heliyon.2024.e35427.
[23] GUO H,AHN S,ZHANG L P.Benzene-associated immunosuppression and chronic inflammation in humans:a systematic review[J/OL].Occup Environ Med,2020[2025-11-16].https://doi.org/10.1136/oemed-2020-106517.
[24] PILIA I,CAMPAGNA M,MARCIAS G,et al.Biomarkers of low-level environmental exposure to benzene and oxidative DNA damage in primary school children in Sardinia,Italy[J/OL].Int J Environ Res Public Health,2021,18(9)[2025-11-16].https://doi.org/10.3390/ijerph18094644.
[25] 赵岩,王晨鑫,杨天明,等.DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J].遗传,2022,44(6):466-477.
[26] HOLMES T H,WINN L M.DNA damage,DNA repair gene expression,and topoisomerase Ⅱα activity in CD-1 mice following in utero benzene exposure[J].Toxicol Lett,2022,368:47-55.
[27] ZHU B Z,TANG M,HUANG C H,et al.Mechanistic study on oxidative DNA damage and modifications by haloquinoid carcinogenic intermediates and disinfection byproducts[J].Chem Res Toxicol,2021,34(7):1701-1712.
[28] WANG F E,YE L Z,JIANG X H,et al.Specific CpG sites methylation is associated with hematotoxicity in low-dose benzene-exposed workers[J/OL].Environ Int,2024,186[2025-11-16].https://doi.org/10.1016/j.envint.2024.108645.
[29] 王爱红,李晓海,冷朋波,等.低浓度苯暴露与外周血淋巴细胞miR-223和miR-155表达的关联研究[J].预防医学,2022,34(1):11-16.
[30] LV Y R,LI Z X,CHEN Y C,et al.miR-451a and miR-486-5p:biomarkers for benzene-induced hematotoxicity[J].Arch Toxicol,2025,99(2):717-728.
[31] 许蕾,杨蕾,吴凡,等.小鼠miR-144/451降低红细胞活性氧簇水平抑制AKT蛋白磷酸化的实验研究[J].实用临床医药杂志,2020,24(2):29-32,37.
[32] QIAO Y M,ZHAO Y Y,WANG G,et al.Protection from benzene-induced immune dysfunction in mice[J/OL].Toxicology,2022,468[2025-11-16].https://doi.org/10.1016/j.tox.2022.153103.
[33] ZHOU B X,WU Q S,FAN S H,et al.Mediating effect of oxidative stress on blood pressure elevation in workers exposed to low concentrations of benzene,toluene,and xylene(BTX)[J/OL].Sci Rep,2024,14(1)[2025-11-16].https://doi.org/10.1038/s41598-024-77689-9.
[34] JELIC M D,MANDIC A D,MARICIC S M,et al.Oxidative stress and its role in cancer[J].J Cancer Res Ther,2021,17(1):22-28.
[35] 段丹萍,李艳,陈琳,等.低浓度职业性苯接触工人热休克蛋白90α水平及氧化应激效应研究[J].职业卫生与应急救援,2024,42(2):181-185.
[36] 王爱红,李晓海,冷朋波,等.低浓度苯暴露男性工人尿8-OHdG水平的影响因素[J].环境与职业医学,2020,37(3):243-248.
[37] ELKAMA A,ŞENTÜRK K,KARAHALIL B.Assessment of genotoxicity biomarkers in gasoline station attendants due to occupational exposure[J].Toxicol Ind Health,2024,40(6):337-351.
[38] JAFARI ROSHAN S,MANSOORI Y,HOSSEINI S R,et al.Genetic variations in ATM and H2AX loci contribute to risk of hematological abnormalities in individuals exposed to BTEX chemicals[J/OL].J Clin Lab Anal,2022,36(4)[2025-11-16].https://doi.org/10.1002/jcla.24321.
[39] LOVREGLIO P,STUFANO A,ANDREOLI R,et al.Urinary biomarkers of nucleic acid oxidation and methylation in workers exposed to low concentrations of benzene[J].Toxicol Lett,2020,331:235-241.
[40] ZHANG Q Q,LU F F,ZHANG C X,et al.Blocking exosomal secretion aggravated 1,4-benzoquinone-induced cytotoxicity[J].Environ Toxicol,2024,39(3):1099-1106.
[41] 张宁. 雾霾暴露对室内外工作人员外周血炎症、氧化、凋亡指标的影响以及IL-10改善PM2.5诱导的肺损伤作用和机制研究[D].石家庄:河北医科大学,2021.
[42] 徐守香. MicroRNA let-7e-5p靶向调控p21和Caspase-3在苯致造血毒性中的作用与机制研究[D].南京:东南大学,2021.
[1] 姜艳, 李锦成, 许纯, 杨科佼, 杨文彬, 徐胜. 扬州市MSM人群艾滋病非职业暴露后预防知晓率调查[J]. 预防医学, 2025, 37(9): 903-906,912.
[2] 俞雅沁, 赵丽, 谢臻蔚. 女性盆底功能障碍性疾病评估研究进展[J]. 预防医学, 2025, 37(8): 794-798.
[3] 辛宇璐, 李沐家, 丁晓慧, 卢炀, 李文静, 王林平, 路小婷, 宋静. 基于分位数回归模型的铝作业工人认知功能影响因素分析[J]. 预防医学, 2025, 37(4): 382-385,389.
[4] 石梦醒, 杨妍, 杜利敏. 固相萃取气相色谱质谱法多反应监测模式检测饮用水17种邻苯二甲酸酯[J]. 预防医学, 2025, 37(1): 102-108.
[5] 祖尼热·吐尔逊, 陈楠, 马英杰, 阿尔娜·恰依马尔旦, 张雪寒, 刘早玲. 十溴联苯醚对小鼠宫颈癌皮下移植瘤相关基因及信号通路的影响[J]. 预防医学, 2024, 36(3): 272-276.
[6] 崔蓉, 郑玉建, 鲁英, 夏力旦·阿力甫. 围产期苯并[a]芘暴露对仔鼠胰腺PDX-1、TFAM表达及线粒体DNA拷贝数的影响[J]. 预防医学, 2024, 36(1): 65-69.
[7] 赵玉文, 李泽冉, 薛香菊, 杨萌, 吉文亮, 荣维广. 气相色谱串联质谱法检测木砧板中五氯苯酚[J]. 预防医学, 2023, 35(9): 825-828.
[8] 王芳, 杨凤华, 杨中荣, 邵国健, 王晔. 湖州市市售黄酒邻苯二甲酸酯污染健康风险评价[J]. 预防医学, 2023, 35(5): 421-424.
[9] 张倩, 罗德威, 周乐, 杨惠民, 杨文彬, 刘艳, 李锦成. 扬州市居民艾滋病非职业暴露后预防知晓情况调查[J]. 预防医学, 2023, 35(12): 1093-1096.
[10] 聂世姣, 缪群, 王淑颖, 赵洪峰, 费莹. 2010—2022年某三甲综合医院医务人员血源性职业暴露监测结果[J]. 预防医学, 2023, 35(11): 997-1000.
[11] 王川, 赵秋玲, 马艳艳, 高倩, 赵月, 罗佳. 2012—2021年朝阳区新生儿遗传代谢病筛查工作质量评价[J]. 预防医学, 2023, 35(11): 1001-1004.
[12] 刘丽迎, 康文娟, 董勤, 张晓刚, 阎亚琼. 53例苯丙酮尿症新生儿体格、智力和基因特征[J]. 预防医学, 2022, 34(9): 955-958.
[13] 张玉俊, 王岩, 地力亚尔·吾斯曼江, 刘广超, 聂艳武, 朱琳. 应用生物信息学方法鉴定食管鳞状细胞癌生物标志物[J]. 预防医学, 2022, 34(9): 906-913.
[14] 王芳, 杨凤华, 邵国健, 胡明友, 王晔. 磁性固相萃取-气相色谱-串联质谱法测定市售酒中16种邻苯二甲酸酯[J]. 预防医学, 2022, 34(8): 855-860.
[15] 崔蓉, 郑玉建, 鲁英, 夏力旦·阿力甫. 子宫内B[a]P暴露与子代鼠BPDE-DNA加合物及胰腺功能损伤的关系[J]. 预防医学, 2022, 34(4): 335-339,345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed