Please wait a minute...
文章检索
预防医学  2026, Vol. 38 Issue (2): 124-129    DOI: 10.19485/j.cnki.issn2096-5087.2026.02.004
  论著 本期目录 | 过刊浏览 | 高级检索 |
老年人轻度认知功能障碍风险预测模型研究
马宗康1, 刘星郎1, 李惠惠1, 何国威1, 颜萍1, 张传荣2, 马萱1, 车雅洁1, 于珊1, 陈凤辉1
1.新疆医科大学护理学院,新疆 乌鲁木齐 830017;
2.伊宁县愉群翁回族乡卫生院,新疆 伊宁 835108
A prediction model for mild cognitive impairment risk among the elderly
MA Zongkang1, LIU Xinglang1, LI Huihui1, HE Guowei1, YAN Ping1, ZHANG Chuanrong2, MA Xuan1, CHE Yajie1, YU Shan1, CHEN Fenghui1
1. School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang 830017, China;
2. Yining County Yuqunweng Hui Ethnic Township Health Center, Yining, Xinjiang 835108, China
全文: PDF(1010 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 建立老年人轻度认知功能障碍(MCI)的风险预测模型,为MCI早期筛查提供工具。方法 于2022年7月—2024年9月,采用多阶段分层随机整群抽样方法抽取新疆维吾尔自治区≥65岁常住居民为研究对象,通过问卷调查和体格检查收集社会人口学信息、营养状况、人体成分指标、骨密度和握力等资料,根据四肢骨骼肌指数和握力判定肌少症;结合文化程度,采用简易精神状态检查量表判定MCI。按照7∶3的比例将研究对象资料随机纳入训练集和验证集。采用LASSO回归和多因素logistic回归模型筛选预测因子,建立MCI风险预测模型;采用受试者操作特征(ROC)曲线和决策曲线分析(DCA)评估模型预测效能。结果 调查老年人1 641人,其中男性755人,占46.01%;女性886人,占53.99%。年龄以65~<75岁为主,1 154人占70.32%。检出MCI 517人,检出率为31.51%。LASSO回归和多因素logistic回归分析结果显示,居住地(农村,OR=2.323,95%CI:1.682~3.210)、年龄(75~<85岁,OR=1.405,95%CI:1.019~1.937;≥85岁,OR=3.655,95%CI:1.696~7.875)、文化程度(小学,OR=0.341,95%CI:0.247~0.472;初中,OR=0.255,95%CI:0.160~0.408;高中,OR=0.286,95%CI:0.154~0.531;本科及以上,OR=0.120,95%CI:0.041~0.351)、饮酒史(有,OR=3.216,95%CI:2.164~4.779)、营养不良风险(有,OR=1.464,95%CI:1.064~2.014)、肌少症(有,OR=3.197,95%CI:2.332~4.385)和腰臀比(异常,OR=1.540,95%CI:1.159~2.048)是老年人MCI的风险预测因子。训练集ROC曲线下面积、灵敏度和特异度分别为0.788、0.719和0.712,验证集分别为0.784、0.913和0.542;DCA结果显示,当风险阈值概率为0.124~0.764时,使用该模型预测MCI风险的临床净收益较高。结论 本研究建立的风险预测模型有较好的区分度和临床实用性,对老年人MCI风险有较好的预测价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马宗康
刘星郎
李惠惠
何国威
颜萍
张传荣
马萱
车雅洁
于珊
陈凤辉
关键词 轻度认知功能障碍老年人预测模型简易精神状态检查量表    
AbstractObjective To develop a prediction model for mild cognitive impairment (MCI) risk among the elderly, so as to provide a tool for MCI early screening. Methods From July 2022 to September 2024, a multi-stage stratified random cluster sampling method was used to recruit permanent residents aged ≥65 years from the Xinjiang Uygur Autonomous Region as study participants. Data on sociodemographic characteristics, nutritional status, body composition indices, bone mineral density, and handgrip strength were collected through questionnaires and physical examinations. Sarcopenia was defined based on appendicular skeletal muscle index and handgrip strength. MCI was assessed using the Mini-Mental State Examination, with adjustments for educational level. Participants were randomly divided into a training set and a validation set in a 7∶3 ratio. LASSO regression and multivariable logistic regression models were employed to screen for predictors and construct an MCI risk prediction model. The predictive performance of the model was evaluated using receiver operating characteristic (ROC) curve and decision curve analysis (DCA). Results A total of 1 641 participants were surveyed, including 755 males (46.01%) and 886 females (53.99%). The majority of participants were aged 65-<75 years, comprising 1 154 individuals (70.32%). MCI was detected in 517 participants, corresponding to a detection rate of 31.51%. Resultsfrom LASSO regression and multivariate logistic regression analysis showed that residence (rural, OR = 2.323, 95% CI: 1.682-3.210), age (75-<85 years, OR = 1.405, 95% CI: 1.019-1.937; ≥85 years, OR = 3.655, 95% CI: 1.696-7.875), educational level (primary school, OR = 0.341, 95% CI: 0.247-0.472; junior high school, OR = 0.255, 95% CI: 0.160-0.408; high school, OR = 0.286, 95% CI: 0.154-0.531; bachelor's degree or above, OR = 0.120, 95% CI: 0.041-0.351), history of alcohol consumption (yes, OR = 3.216, 95% CI: 2.164-4.779), risk of malnutrition (yes, OR = 1.464, 95% CI: 1.064-2.014), sarcopenia (yes, OR = 3.197, 95% CI: 2.332-4.385), and waist-to-hip ratio (abnormal, OR = 1.540, 95% CI: 1.159-2.048) were identified as predictive factors for MCI among the elderly. In the training set, the area under the ROC curve, sensitivity, and specificity were 0.788, 0.719, and 0.712, respectively. In the validation set, the corresponding values were 0.784, 0.913, and 0.542, respectively. DCA demonstrated that the model provided a higher clinical net benefit for predicting MCI risk when the risk threshold probability ranged from 0.124 to 0.764. Conclusion The prediction model developed in this study demonstrates good discriminative ability and clinical utility, indicating its substantial value for predicting the MCI risk among the elderly.
Key wordsmild cognitive impairment    the elderly    prediction model    Mini-Mental State Examination
收稿日期: 2025-11-11      修回日期: 2026-01-26     
中图分类号:  R749.1  
基金资助:新疆维吾尔自治区区域协同创新专项科技援疆计划项目(2022E02119); 新疆医科大学2024年科研创新团队项目(XYD2024C06)
作者简介: 马宗康,硕士研究生在读,护理学专业
通信作者: 陈凤辉,E-mail:fenghuichen1980@xjmu.edu.cn   
引用本文:   
马宗康, 刘星郎, 李惠惠, 何国威, 颜萍, 张传荣, 马萱, 车雅洁, 于珊, 陈凤辉. 老年人轻度认知功能障碍风险预测模型研究[J]. 预防医学, 2026, 38(2): 124-129.
MA Zongkang, LIU Xinglang, LI Huihui, HE Guowei, YAN Ping, ZHANG Chuanrong, MA Xuan, CHE Yajie, YU Shan, CHEN Fenghui. A prediction model for mild cognitive impairment risk among the elderly. Preventive Medicine, 2026, 38(2): 124-129.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2026.02.004      或      https://www.zjyfyxzz.com/CN/Y2026/V38/I2/124
[1] 冯钰惠,李珊珊,陶剑文,等.老年人认知功能障碍调查及其影响因素研究[J].中国全科医学,2024,27(26):3297-3303.
[2] PÉREZ PALMER N,TREJO ORTEGA B,JOSHI P.Cognitive impairment in older adults:epidemiology,diagnosis,and treatment[J].Psychiatr Clin North Am,2022,45(4):639-661.
[3] CHEN Y R,QIAN X L,ZHANG Y Y,et al.Prediction models for conversion from mild cognitive impairment to Alzheimer's disease:a systematic review and meta-analysis[J/OL].Front Aging Neurosci,2022,14[2026-01-26].https://doi.org/10.3389/fnagi.2022.840386.
[4] 明淑萍,陈贵勤,邵卫.老年认知功能障碍慢病管理指南[J].中西医结合研究,2025,17(4):242-254.
[5] 麻红梅,李月美,李晓芳,等.亚高原地区老年住院患者轻度认知障碍危险因素分析及预测模型构建[J].中华老年医学杂志,2022,41(1):80-85.
[6] SPITZER R L,KROENKE K,WILLIAMS J B W,et al.A brief measure for assessing generalized anxiety disorder:the GAD-7[J].Arch Intern Med,2006,166(10):1092-1097.
[7] SHEIKH J I,YESAVAGE J A.A knowledge assessment test for geriatric psychiatry[J].Hosp Community Psychiatry,1985,36(11):1160-1166.
[8] RUBENSTEIN L Z,HARKER J O,SALVÀA,et al.Screening for undernutrition in geriatric practice:developing the short-form mini-nutritional assessment(MNA-SF)[J].J Gerontol A Biol Sci Med Sci,2001,56(6):366-372.
[9] 中华医学会老年医学分会,国家老年疾病临床医学研究中心(湘雅医院).中国肌肉减少症诊疗指南(2024版)[J].中华医学杂志,2025,105(3):181-203.
[10] 中国健康促进基金会基层医疗机构骨质疏松症诊断与治疗专家共识委员会.基层医疗机构骨质疏松症诊断和治疗专家共识(2021)[J].中国骨质疏松杂志,2021,27(7):937-944.
[11] World Health Organization.Waist circumference and waist-hip ratio:report of a WHO expert consultation[EB/OL].[2026-01-26].https://www.WHO.int/publications/i/item/9789241501491.
[12] FOLSTEIN M F,FOLSTEIN S E,MCHUGH P R.“Mini-mental state”.A practical method for grading the cognitive state of patients for the clinician[J].J Psychiatr Res,1975,12(3):189-198.
[13] 中华医学会神经病学分会痴呆与认知障碍学组.轻度认知损害的神经心理评估专家共识(2025版)[J].中华医学杂志,2025,105(3):204-218.
[14] 禹延雪,白茹玉,于文龙,等.≥60岁人群认知功能障碍发生现状及影响因素研究[J].中国全科医学,2023,26(21):2581-2588.
[15] 范转转,王军永,谭萍芬.中国65岁及以上老年人认知功能的城乡差异及其影响因素分解[J].卫生软科学,2022,36(12):30-35,45.
[16] 张媛,史凌云,吴瑞凯,等.老年病科住院患者轻度认知功能障碍的影响因素分析[J].预防医学,2024,36(4):299-303.
[17] 李斌,李永超,宋燕,等.吸烟和轻中度饮酒与社区老年男性认知功能相关性研究[J].中国神经精神疾病杂志,2024,50(4):221-226.
[18] 杨红艳,吴茜.轻度认知功能障碍病人营养状态及营养干预研究进展[J].护理研究,2020,34(20):3652-3655.
[19] HU Y S,PENG W J,REN R J,et al.Sarcopenia and mild cognitive impairment among elderly adults:the first longitudinal evidence from CHARLS[J].J Cachexia Sarcopenia Muscle,2022,13(6):2944-2952.
[20] 冯钰惠,乐璐潇,张德应,等.不同肥胖指标与社区老年人认知功能关系研究[J].老年医学与保健,2021,27(1):161-163,176.
[1] 万阳, 张世伟, 胡建功, 肖春丽, 赵红叶, 吴殚, 甘冰洋, 陈梦鑫, 张瑞祎, 王凤双, 彭涛. 顺义区老年人健康素养水平及影响因素分析[J]. 预防医学, 2026, 38(2): 201-205.
[2] 李燕冰, 周树彤, 李莹莹, 毕善琳, 李友卫. 农村中老年慢性病患者自我效能感在家庭健康与健康素养间的中介效应分析[J]. 预防医学, 2026, 38(1): 75-78,84.
[3] 董春玲, 王冲, 关添元, 刘玥, 李雪莹, 张玉海. 基于组轨迹模型的老年人膳食多样性与认知功能研究[J]. 预防医学, 2025, 37(9): 865-869.
[4] 杜昌翰, 高琳茜, 卢心雨, 赵渭娟, 李领. 1992—2021年我国老年人群口腔癌疾病负担的年龄-时期-队列分析[J]. 预防医学, 2025, 37(9): 870-874.
[5] 章涛, 林君芬, 古雪, 徐乐, 李傅冬, 吴晨. 社区老年人阿尔茨海默病列线图预测模型构建[J]. 预防医学, 2025, 37(9): 875-880.
[6] 陶桃, 张海芳, 凡鹏飞, 李秋华, 陈晓蕾. 丽水市老年肺结核患者治疗转归的影响因素分析[J]. 预防医学, 2025, 37(9): 892-896,902.
[7] 徐艳平, 闫晓彤, 姚丁铭, 徐越, 张雪海, 孙洁, 徐锦杭. 浙江省中老年人肺炎疫苗接种意愿的影响因素研究[J]. 预防医学, 2025, 37(9): 881-885.
[8] 翟羽佳, 章涛, 古雪, 徐乐, 吴梦娜, 林君芬, 吴晨. 社区老年人认知衰弱现况调查[J]. 预防医学, 2025, 37(8): 762-766,772.
[9] 徐莉, 刘萍, 卞宇旬, 陈圆媛, 李鑫娜, 周乐. 扬州市新报告50岁及以上HIV/AIDS病例抗病毒治疗前耐药分析[J]. 预防医学, 2025, 37(8): 779-782,788.
[10] 王晓宇, 张志平, 董玉颖, 梁杰, 陈强. 老年人带状疱疹疫苗接种意愿的影响因素分析[J]. 预防医学, 2025, 37(8): 809-813.
[11] 孙强, 黄颖, 李小勇, 杨晨迎, 王思嘉. 2014—2023年宁波市老年伤害病例特征分析[J]. 预防医学, 2025, 37(8): 822-826,831.
[12] 何欢, 赵雪, 蔡鹏, 詹小亚, 马蕾. 老年慢性阻塞性肺疾病患者运动恐惧的影响因素研究[J]. 预防医学, 2025, 37(7): 659-663.
[13] 楚楚, 徐红, 蔡波, 韩颖颖, 穆海祥, 郑会燕, 林玲. 中老年人群脑卒中风险预测模型研究[J]. 预防医学, 2025, 37(7): 649-653.
[14] 王剑铃, 沈小华, 李婷, 宋维红. 疗休养老年人老年综合评估结果分析[J]. 预防医学, 2025, 37(6): 593-597.
[15] 叶露梦, 郑广勇. 象山县养老机构老年人健康素养调查[J]. 预防医学, 2025, 37(6): 627-631.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed