Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (12): 1228-1232    DOI: 10.19485/j.cnki.issn2096-5087.2025.12.008
  论著 本期目录 | 过刊浏览 | 高级检索 |
中老年人群内脏脂肪代谢水平与心血管疾病的关联研究
孔洁, 黄攀登, 任东静, 赵丹, 张友涛
河北北方学院附属第一医院,河北 张家口 075000
Association between visceral fat metabolic levels and cardiovascular diseases among middle-aged and elderly population
KONG Jie, HUANG Pandeng, REN Dongjing, ZHAO Dan, ZHANG Youtao
The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
全文: PDF(798 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 探讨中老年人群内脏脂肪代谢水平与CVD的关联,为中老年人群CVD的早期识别与防控提供依据。方法 基于中国健康与养老追踪调查(CHARLS)2011—2020年数据库,收集≥45岁中老年人人口学信息、生活方式、疾病史等基线资料和CVD患病情况;收集2012年和2015年身高、体重、腰围和血生化指标等资料,计算内脏脂肪代谢评分(METS-VF)和累计METS-VF,评估内脏脂肪代谢水平;采用K-means聚类算法分析METS-VF类别。采用多因素logistic回归模型分析不同METS-VF类别、累计METS-VF与CVD关联,采用限制性立方样条模型分析累计METS-VF与CVD的剂量-反应关系。结果 纳入3 146名研究对象,年龄MQR)为57.00(12.00)岁。男性1 405人,占44.66%;女性1 741人,占55.34%。METS-VF聚类为持续低水平组、持续中水平组和持续高水平组3类,分别为497、1 302和1 347人,占15.80%、41.39%和42.82%。随访至2020年,CVD 540例,患病率为17.16%,不同METS-VF类别CVD患病率分别为12.47%、14.36%和21.60%。多因素logistic回归分析结果显示,调整人口学信息、生活方式和疾病史等,与持续低水平组相比,持续高水平组的CVD风险较高(OR=1.710,95%CI:1.263~2.342);累计METS-VF与CVD风险呈正相关(OR=1.197,95%CI:1.113~1.289)。限制性立方样条结果显示累计METS-VF与CVD风险存在线性关系(P非线性>0.05)。结论 持续高水平的METS-VF可增加中老年人群CVD风险,且累计METS-VF与CVD风险呈正向剂量-反应关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔洁
黄攀登
任东静
赵丹
张友涛
关键词 内脏脂肪代谢评分心血管疾病K-means聚类中老年人群    
AbstractObjective To examine the association between visceral fat metabolic levels and cardiovascular disease (CVD) among middle-aged and elderly population, so as to provide the evidence for the early identification and prevention of CVD risk in this population. Methods Based on the database of the China Health and Retirement Longitudinal Study (CHARLS) from 2011 to 2020, baseline demographic information, lifestyle, disease history, and CVD status of participants aged ≥45 years were collected. Data on height, weight, waist circumference, and blood biochemical indicators from 2012 and 2015 were collected and used to calculate the metabolic score for visceral fat (METS-VF) and cumulative METS-VF, enabling an assessment of visceral fat metabolism levels. The K-means clustering algorithm was applied to analyze the categories of METS-VF. Multivariable logistic regression models were used to analyze the association between different METS-VF categories, cumulative METS-VF and CVD. A restricted cubic spline model was employed to examine the dose-response relationship between cumulative METS-VF and CVD. Results A total of 3 146 participants were included, with a median age of 57.00 (interquartile range, 12.00) years. There were 1 405 males (44.66%) and 1 741 females (55.34%). METS-VF was clustered into three distinct categories: a persistently low-level group, a persistently moderate-level group, and a persistently high-level group, comprising 497, 1 302, and 1 347 individuals, accounting for 15.80%, 41.39%, and 42.82%, respectively. By the 2020 follow-up, there were 540 cases of CVD, with an overall prevalence of 17.16%. The prevalence of CVD among different METS-VF categories were 12.47%, 14.36%, and 21.60%, respectively. Multivariable logistic regression analysis showed that, after adjusting for demographic factors, lifestyle, and disease history, compared with the persistently low-level group, the persistently high-level group had a higher risk of CVD (OR=1.710, 95%CI: 1.263-2.342). Cumulative METS-VF was positively associated with CVD risk (OR=1.197, 95%CI: 1.113-1.289). Restricted cubic spline analysis indicated a linear relationship between cumulative METS-VF and CVD risk (P for nonlinearity >0.05). Conclusion Persistently high levels of METS-VF can increase the risk of CVD among middle-aged and elderly population, and there is a positive dose-response relationship between cumulative METS-VF and CVD risk.
Key wordsmetabolic score for visceral fat    cardiovascular disease    K-means clustering    middle-aged and elderly population
收稿日期: 2025-09-15      修回日期: 2025-12-02      出版日期: 2025-12-10
中图分类号:  R54  
基金资助:河北省医学科学研究课题(20250892)
作者简介: 孔洁,本科,主管护师,主要从事老年疾病预防工作
通信作者: 张友涛,E-mail:kkkzhyt009@163.com   
引用本文:   
孔洁, 黄攀登, 任东静, 赵丹, 张友涛. 中老年人群内脏脂肪代谢水平与心血管疾病的关联研究[J]. 预防医学, 2025, 37(12): 1228-1232.
KONG Jie, HUANG Pandeng, REN Dongjing, ZHAO Dan, ZHANG Youtao. Association between visceral fat metabolic levels and cardiovascular diseases among middle-aged and elderly population. Preventive Medicine, 2025, 37(12): 1228-1232.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.12.008      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I12/1228
[1] ROTH G A,MENSAH G A,JOHNSON C O,et al.Global burden of cardiovascular diseases and risk factors,1990–2019:update from the GBD 2019 study[J].J Am Coll Cardiol,2020,76(25):2982-3021.
[2] 黄文,何亮,傅玲娟,等.动脉粥样硬化性心血管疾病高危人群血脂控制达标的影响因素研究[J].预防医学,2023,35(10):834-839.
HUANG W,HE L,FU L J,et al.Factors affecting blood lipid control among residents at a high risk of atherosclerotic cardiovascular disease[J].China Prev Med J,2023,35(10):834-839.(in Chinese)
[3] MENSAH G A,FUSTER V,ROTH G A.A heart-healthy and stroke-free world:using data to inform global action[J].J Am Coll Cardiol,2023,82(25):2343-2349.
[4] MENSAH G A,FUSTER V,MURRAY C J L,et al.Global burden of cardiovascular diseases and risks,1990-2022[J].J Am Coll Cardiol,2023,82(25):2350-2473.
[5] 张小娜. 中老年人肥胖相关人体测量指标变化轨迹的影响因素及其与心血管疾病相关性研究[D].武汉:湖北中医药大学,2024.
ZHANG X N.Factors influencing the trajectory of obesity-related anthropometric indicators and their correlation with cardiovascular diseases in middle-aged and elderly people[D].Wuhan:Hubei University of Chinese Medicine,2024.(in Chinese)
[6] 杨静芬,黄晓渝.中国人内脏脂肪指数与中老年心血管疾病发病风险的关联性研究[J].临床心血管病杂志,2024,40(1):40-45.
YANG J F,HUANG X Y.Association between visceral fat index and the risk of cardiovascular disease in middle-aged and elderly people in China[J].J Clin Cardiol,2024,40(1):40-45.(in Chinese)
[7] ASHWELL M,COLE T J,DIXON A K.Obesity:new insight into the anthropometric classification of fat distribution shown by computed tomography[J].Br Med J,1985,290(6483):1692-1694.
[8] FENG L,CHEN T,WANG X,et al.Metabolism score for visceral fat(METS-VF):a new predictive surrogate for CKD risk[J].Diabetes Metab Syndr Obes,2022,15:2249-2258.
[9] ZHU Y R,ZOU H J,GUO Y M,et al.Associations between metabolic score for visceral fat and the risk of cardiovascular disease and all-cause mortality among populations with different glucose tolerance statuses[J/OL].Diabetes Res Clin Pract,2023[2025-12-02] .https://doi.org/10.1016/j.diabres.2023.110842.
[10] BELLO-CHAVOLLA O Y,ANTONIO-VILLA N E,VARGAS-VÁZQUEZ A,et al.Metabolic score for visceral fat(METS-VF),a novel estimator of intra-abdominal fat content and cardio-metabolic health[J].Clin Nutr,2020,39(5):1613-1621.
[11] SETIAWAN K E,KURNIAWAN A,CHOWANDA A,et al.Clustering models for hospitals in Jakarta using fuzzy c-means and k-means[J].Procedia Comput Sci,2023,216:356-363.
[12] TORUN C,ANKARALıH,CAŞTUR L,et al.Is metabolic score for visceral fat(METS-VF)a better index than other adiposity indices for the prediction of visceral adiposity[J].Diabetes Metab Syndr Obes,2023,16:2605-2615.
[13] KAPOOR N,JIWANMALL S A,NANDYAL M B,et al.Metabolic score for visceral fat(METS-VF)estimation-a novel cost-effective obesity indicator for visceral adipose tissue estimation[J].Diabetes Metab Syndr and Obes,2020,13:3261-3267.
[14] LIU Q,CUI H Z,SI F,et al.Association of cumulative exposure to metabolic score for visceral fat with the risk of cardiovascular disease and all-cause mortality:a prospective cohort study[J/OL].J Cachexia Sarcopenia Muscle,2025,16(1)[2025-12-02] .https://doi.org/10.1002/jcsm.13702.
[15] TRIPATHI H,SINGH A,FARHEEN,et al.The Metabolic Score for Visceral Fat(METS-VF)as a predictor of diabetes mellitus:evidence from the2011-2018 NHANES study[J/OL].PLoS One,2025,20(2)[2025-12-02] .https://doi.org/10.1371/journal.pone.0317913.
[16] YANG R J,KUANG M B,QIU J J,et al.Assessing the usefulness of a newly proposed metabolic score for visceral fat in predicting future diabetes:results from the NAGALA cohort study[J/OL].Front Endocrinol(Lausanne),2023,14[2025-12-02] .https://doi.org/10.3389/fendo.2023.1172323.
[1] 王尊晖, 张丛笑, 沈利明, 陈晖, 牛星凯. 西湖区中老年人群抑郁症状调查[J]. 预防医学, 2025, 37(3): 296-299.
[2] 周国营, 邢丽丽, 苏颖, 刘宏杰, 刘赫, 王迪, 薛锦峰, 戴威, 汪静, 杨兴华. 2007—2022年东城区心血管疾病发病趋势[J]. 预防医学, 2024, 36(9): 813-816.
[3] 谭靖宇, 拓嘉怡, 杨丹妮, 方婕, 李泓澜, 项永兵. 中老年人群膳食炎症指数与胆石症的关联研究[J]. 预防医学, 2024, 36(7): 611-615.
[4] 江雨晨,高倩. 阿司匹林预防心血管疾病研究进展[J]. 预防医学, 2024, 36(4): 304-307,313.
[5] 黄文, 汤佳良, 陈康康, 黄敏钢, 陈奇峰. 绍兴市心血管疾病高危人群危险因素聚集分析[J]. 预防医学, 2023, 35(4): 298-302,330.
[6] 马润泽, 石芳, 李洪全, 吕梦竹, 努尔比亚木·艾合提, 田小丽, 陈思敏, 晏师康, 开地日艳·库日班江, 杨蕾. 心血管疾病合并肌少症的影响因素研究[J]. 预防医学, 2023, 35(11): 939-942,947.
[7] 黄文, 何亮, 傅玲娟, 翁丽霞, 张馨锡, 朱淑霞, 张阳辉, 陈奇峰. 动脉粥样硬化性心血管疾病高危人群血脂控制达标的影响因素研究[J]. 预防医学, 2023, 35(10): 834-839.
[8] 王倩倩, 曲淑娜, 于绍轶, 张红杰. 脂质蓄积指数和内脏脂肪指数筛查中老年人群代谢综合征研究[J]. 预防医学, 2022, 34(9): 928-931.
[9] 林永兴, 刘足云, 李娜, 于村. 1990—2019年浙江省心血管疾病负担变化趋势[J]. 预防医学, 2022, 34(10): 1020-1025.
[10] 赵瑞, 黄胜楠, 肖暖. 中等强度有氧运动预防高胆固醇血症患者动脉粥样硬化性心血管疾病效果评价[J]. 预防医学, 2022, 34(1): 58-62.
[11] 韩雅斌, 陈向宇, 钟节鸣, 方乐, 梁明斌, 谢开婿, 张晓怡, 曹元, 陆凤, 徐春晓, 林静静. 桐乡市老年人群心血管疾病危险因素暴露及聚集分析[J]. 预防医学, 2021, 33(8): 812-814.
[12] 向静, 赵廷明, 李鑫, 张劲. 通江县35~75岁居民心血管疾病高危人群调查[J]. 预防医学, 2021, 33(6): 609-614.
[13] 蒙家嘉, 李辉, 王永, 纪威, 冯伟, 张瑞洁, 刘杨, 刘世炜, 韩丽媛. 2009—2018年宁波市居民心血管疾病死亡及早死所致疾病负担趋势分析[J]. 预防医学, 2021, 33(5): 451-456.
[14] 王倩倩, 刘海韵, 于绍轶, 曲淑娜, 张红杰. 中老年人群2型糖尿病与骨质疏松发病的竞争风险研究[J]. 预防医学, 2021, 33(11): 1136-1138.
[15] 陈欢, 刘永生,尹扬光. PM2.5对动脉粥样硬化的影响及机制[J]. 预防医学, 2021, 33(10): 1017-1021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed