Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (5): 465-470    DOI: 10.19485/j.cnki.issn2096-5087.2025.05.007
  论著 本期目录 | 过刊浏览 | 高级检索 |
肺炎住院患者多重耐药菌感染的预测模型研究
白瑞盈1, 生海燕2
1.蚌埠医科大学研究生院,安徽 蚌埠 233030;
2.蚌埠医科大学第二附属医院,安徽 蚌埠 233000
A prediction model of multidrug resistant bacterial for inpatients with pneumonia
BAI Ruiying1, SHENG Haiyan2
1. Graduate School, Bengbu Medical University, Bengbu, Anhui 233030, China;
2. The Second Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
全文: PDF(1086 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 构建肺炎住院患者多重耐药菌感染预测模型,为多重耐药菌感染早期识别及干预提供依据。方法 选择2022年10月—2024年6月在蚌埠医科大学第二附属医院治疗的肺炎住院患者为研究对象,收集患者基本信息和临床资料;采集呼吸道分泌物做病原学培养和药物敏感性试验;采用LASSO回归和多因素logistic回归模型筛选预测因子,建立肺炎住院患者多重耐药菌感染的预测模型;采用受试者操作特征(ROC)曲线、校准曲线和决策曲线评估模型的预测效果。结果 纳入肺炎住院患者368例,其中男性215例,占58.42%;女性153例,占41.58%。年龄MQR)为71.00(20.00)岁。检出多重耐药菌感染168例,检出率为45.65%。多因素logistic回归分析结果显示,长期卧床(OR=2.699,95%CI:1.120~6.504)、近30 d内使用抗生素(OR=8.623,95%CI:2.949~25.216)、呼吸衰竭(OR=2.407,95%CI:1.058~5.478)、重症监护病房治疗(OR=3.995,95%CI:1.313~12.161)和低蛋白血症(OR=2.129,95%CI:1.012~4.480)是肺炎住院患者多重耐药菌感染的预测因子。建立的多重耐药菌感染预测模型ROC曲线下面积为0.909(95%CI:0.879~0.939);校准曲线趋近于标准曲线,预测值与实测值高度吻合;决策曲线显示概率阈值为0.27~0.99时,预测多重耐药菌感染风险的临床净收益较高。结论 本研究构建的多重耐药菌感染预测模型对肺炎住院患者多重耐药菌感染具有较好的预测价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白瑞盈
生海燕
关键词 肺炎住院患者多重耐药菌影响因素预测模型    
AbstractObjective To create a prediction model of multidrug resistant bacterial infections for inpatients with pneumonia, so as to provide the reference for the early identification and intervention of multidrug resistant bacterial infections. Methods The inpatients with pneumonia in the Second Affiliated Hospital of Bengbu Medical University from October 2022 to June 2024 were selected as the research subjects. Basic information and clinical data of the patients were collected. Respiratory secretions were collected for etiological culture and drug sensitivity tests to analyze the infection situation of multidrug resistant bacteria. LASSO regression and a multivariable logistic regression model were used to screen predictive factors and establish a predictive model of multidrug resistant bacterial infections for inpatients with pneumonia. The predictive effect of the model was assessed by receiver operating characteristic (ROC) curve, calibration curve, and decision curve. Results A total of 368 inpatients with pneumonia were recruited, including 215 males (58.42%) and 153 females (41.58%). The median age was 71.00 (interquartile range, 20.00) years. There were 168 cases of multidrug resistant bacterial infections detected, with a detection rate of 45.65%. The multivariable logistic regression analysis showed that long-term bedridden patients (OR=2.699, 95%CI: 1.120-6.504), use of antibiotics within 30 days (OR=8.623, 95%CI: 2.949-25.216), respiratory failure (OR=2.407, 95%CI: 1.058-5.478), intensive care unit treatment (OR=3.995, 95%CI: 1.313-12.161), and hypoproteinemia (OR=2.129, 95%CI: 1.012-4.480) were predict factors of multidrug resistant bacterial infections for inpatients with pneumonia. The area under the ROC curve of the established multidrug resistant bacterial infection prediction model was 0.909 (95%CI: 0.879-0.939). The calibration curve after repeated sampling calibration approached the standard curve, and the predicted values were highly consistent with the measured values. The decision curve showed that when the probability threshold is 0.27-0.99, the clinical net benefit for predicting the risk of multidrug resistant bacterial infection is relatively high. Conclusion The prediction model of multidrug resistant bacteria infection constructed has a good predictive value for multidrug resistant bacterial infection among inpatients with pneumonia.
Key wordspneumonia    inpatient    multidrug resistant bacteria    influencing factor    prediction model
收稿日期: 2024-11-25      修回日期: 2025-04-07     
中图分类号:  R563  
基金资助:蚌埠医学院2023年度研究生科研创新计划自然科学项目(Byycx23143)
作者简介: 白瑞盈,硕士研究生在读,呼吸系病专业
通信作者: 生海燕,E-mail:24371542@qq.com   
引用本文:   
白瑞盈, 生海燕. 肺炎住院患者多重耐药菌感染的预测模型研究[J]. 预防医学, 2025, 37(5): 465-470.
BAI Ruiying, SHENG Haiyan. A prediction model of multidrug resistant bacterial for inpatients with pneumonia. Preventive Medicine, 2025, 37(5): 465-470.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.05.007      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I5/465
[1] 黄勋,邓子德,倪语星,等.多重耐药菌医院感染预防与控制中国专家共识[J].中国感染控制杂志,2015,14(1):1-9.
HUANG X,DENG Z D,NI Y X,et al.Chinese experts' consensus on prevention and control of multidrug resistance organism healthcare-associated infection[J].Chin J Infect Control,2015,14(1):1-9.(in Chinese)
[2] BONNET M,ECKERT C,TOURNEBIZE R,et al.Decolonization of asymptomatic carriage of multi-drug resistant bacteria by bacteriophages?[J/OL].Front Microbiol,2023,14[2025-04-07].https://doi.org/10.3389/fmicb.2023.1266416.
[3] 王丹,朱丹,夏敏,等.预防综合ICU多重耐药菌医院感染的成本效益分析[J].中国感染控制杂志,2021,20(12):1119-1125.
WANG D,ZHU D,XIA M,et al.Cost-benefit of prevention of multidrug-resistant organism healthcare-associated infection in a general intensive care unit[J].Chin J Infect Control,2021,20(12):1119-1125.(in Chinese)
[4] 黄琦,杨天富,姜成安,等.基于证据的强化培训与监测管理对医院多重耐药菌感染防控的影响研究[J].现代医院,2025,25(1):140-142,147.
HUANG Q,YANG T F,JIANG C A,et al.Study on the impact of evidence-based reinforcement training and monitoring management on the prevention and control of hospital-acquired multidrug-resistant organism infections[J].Mod Hosp J,2025,25(1):140-142,147.(in Chinese)
[5] 段滢,胡明霞.某院多重耐药菌医院感染的流行病学分析[J].抗感染药学,2024,21(7):714-717.
DUAN Y,HU M X.Epidemiological analysis of healthcare-associated infections caused by multidrug-resistant organisms in a hospital[J].Ant iInfect Pharm,2024,21(7):714-717.(in Chinese)
[6] 刘平香,沈湘波,欧政.某院高龄肺部感染患者多重耐药菌的检出情况及其危险因素分析[J].抗感染药学,2023,20(11):1199-1202.
LIU P X,SHEN X B,OU Z.Analysis of the detection of multidrug-resistant bacteria and their risk factors in elderly patients with lung infection in a hospital[J].Anti Infect Pharm,2023,20(11):1199-1202.(in Chinese)
[7] 于翠香,王西艳.《中国成人医院获得性肺炎与呼吸机相关性肺炎诊断和治疗指南(2018年版)》解读[J].中国医刊,2021,56(9):951-953.
YU C X,WANG X Y.Interpretation of the Guidelines for the Diagnosis and Treatment of ventilator-Associated Pneumonia in Adult Hospitals of China(2018)[J].Chin J Med,2021,56(9):951-953.(in Chinese)
[8] 曹季平. 基于《社区获得性肺炎诊断和治疗指南(2016版)》对医院成人CAP患者抗菌药物使用的相关因素分析[J].抗感染药学,2020,17(3):323-327.
CAO J P.Analysis of relevant factor of antibiotic medication in adult patients with CAP in hospital based on Guidelines of CAP 2016 Edition[J].Anti Infect Pharm,2020,17(3):323-327.(in Chinese)
[9] Clinical and Laboratory Standards Institute.Performance standards.for antimicrobial susceptibility testing[EB/OL].[2025-04-07]https://clsi.org/search/?term=Performance+standards+for+antimicrobial+susceptibility+testing.31sted.CLSI+supplement+M10&tab=products-services.
[10] EL MEKES A,ZAHLANE K,AIT SAID L,et al.The clinical and epidemiological risk factors of infections due to multi-drug resistant bacteria in an adult intensive care unit of University Hospital Center in Marrakesh-Morocco[J].J Infect Public Health,2020,13(4):637-643.
[11] CHINTALAPUDI N,ANGELONI U,BATTINENI G,et al.LASSO regression modeling on prediction of medical terms among seafarers' health documents using tidy text mining[J].Bioengineering(Basel),2022,9(3):124-137.
[12] NTUMY M Y,TETTEH J,AGUADZE S,et al.Predictive model for genital tract infections among men and women in Ghana:an application of LASSO penalized cross-validation regression model[J/OL].Epidemiol Infect,2024,152[2025-04-07].https://doi.org/10.1017/S0950268824001444.
[13] 孙卫锋,吕锐,胡喜荣,等.老年住院脑卒中患者医院获得性肺炎病原菌分布及耐药性分析[J].预防医学,2021,33(12):1256-1259.
SUN W F,LYU R,HU X R,et al.Distribution and drug resistance of hospital-acquired pneumonia pathogens in elderly stroke patients[J].China Prev Med J,2021,33(12):1256-1259.(in Chinese)
[14] GOLLI A L,CRISTEA O M,ZLATIAN O,et al.Prevalence of multidrug-resistant pathogens causing bloodstream infections in an intensive care unit[J].Infect Drug Resist,2022,15:5981-5992.
[15] 张静,李雨珂,王臻,等.重症肺炎患者多药耐药菌感染的病原学及影响因素模型构建[J].中华医院感染学杂志,2023,33(23):3552-3556.
ZHANG J,LI Y K,WANG Z,et al.Etiology of multi-drug resistant bacteria infection in severe pneumonia patients and the construction of influencing factors model[J].Chin J Nosocomiol,2023,33(23):3552-3556.(in Chinese)
[16] 何亚盛,张红霞,倪银,等.急诊重症监护病房住院患者医院感染的预测模型研究[J].预防医学,2022,34(9):919-922.
HE Y S,ZHANG H X,NI Y,et al.A model to predict nosocomial infections among inpatients in emergency intensive care units[J].China Prev Med J,2022,34(9):919-922.(in Chinese)
[17] BABA Y,ISHIGURO T,GOCHI M,et al.A 72-year-old woman with respiratory failure and bilateral ground-glass opacities[J].Chest,2020,158(1):41-45.
[18] 林芳,刘素贞,江海燕.老年2型糖尿病患者营养不良的影响因素分析[J].预防医学,2024,36(1):61-64,69.
LIN F,LIU S Z,JIANG H Y.Factors affecting malnutrition among elderly patients with type 2 diabetes mellitus[J].China Prev Med J,2024,36(1):61-64,69.(in Chinese)
[1] 周蔚, 巢健茜. 江苏省养老机构老年人生命质量影响因素研究[J]. 预防医学, 2025, 37(5): 443-448.
[2] 张丽娜, 曹岚, 谷亚楠, 赵建英. 围绝经期女性颈动脉斑块的影响因素分析[J]. 预防医学, 2025, 37(5): 507-511.
[3] 邓天瑞, 王志勇, 叶青, 唐伟, 杨斌, 徐斐. 老年代谢综合征患者健康相关生命质量研究[J]. 预防医学, 2025, 37(4): 325-330.
[4] 王子睿, 张祥, 刘煜, 周潇潇. 中小学生脊柱弯曲异常与筛查性近视共患现况调查[J]. 预防医学, 2025, 37(4): 336-340.
[5] 王英杰 综述, 孙高峰, 审校. 2型糖尿病预测模型研究进展[J]. 预防医学, 2025, 37(4): 369-372,377.
[6] 张丛笑, 沈利明, 吴丽萍, 黄闽燕, 朱冰, 王尊晖. 西湖区中老年人群轻度认知障碍的影响因素研究[J]. 预防医学, 2025, 37(4): 331-335.
[7] 李瑶, 杨景元, 杨虹, 李向春, 孔瑞琴, 刘静, 白宝宝, 张艳萍, 李慧. 内蒙古自治区艾滋病自愿咨询检测门诊求询者特征分析[J]. 预防医学, 2025, 37(4): 356-360.
[8] 辛宇璐, 李沐家, 丁晓慧, 卢炀, 李文静, 王林平, 路小婷, 宋静. 基于分位数回归模型的铝作业工人认知功能影响因素分析[J]. 预防医学, 2025, 37(4): 382-385,389.
[9] 王雯雯, 陈海龙, 陈梦丽, 邢依依, 张雪娟. 山西省高中生电子产品娱乐性使用调查[J]. 预防医学, 2025, 37(4): 425-428.
[10] 赵倩倩, 张磊, 余力, 夏庆华, 姜玉. 长宁区养老机构老年人睡眠质量调查[J]. 预防医学, 2025, 37(4): 408-412.
[11] 缪彩云, 覃玉, 万亚男, 陈路路, 崔岚, 王小莉. 江苏省居民自测血压行为及影响因素分析[J]. 预防医学, 2025, 37(3): 223-227.
[12] 牛金枝, 吴晓煜, 宁艳娇, 冯亚静, 单伟颖. 体外受精-胚胎移植反复种植失败影响因素的Meta分析[J]. 预防医学, 2025, 37(3): 237-242.
[13] 孙佳美, 卢巧玲, 高华强, 杨作凯, 徐来潮. 肺结核密切接触学生结核菌素皮肤试验结果分析[J]. 预防医学, 2025, 37(3): 243-247.
[14] 孙露, 郑东, 张洪超. 高尿酸血症患者胫前动脉粥样硬化的影响因素分析[J]. 预防医学, 2025, 37(3): 288-292,295.
[15] 王晓闪, 叶丽香, 陈莉, 李敏香, 王心语, 蔡小霞. 基于潜在剖面分析的慢性病住院患者服药依从性影响因素分析[J]. 预防医学, 2025, 37(3): 217-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed